Adaptive Greedy Algorithm for Moderately Large Dimensions in Kernel Conditional Density Estimation - Archive ouverte HAL
Article Dans Une Revue Journal of Machine Learning Research Année : 2022

Adaptive Greedy Algorithm for Moderately Large Dimensions in Kernel Conditional Density Estimation

Résumé

This paper studies the estimation of the conditional density f(x,⋅) of Yi given Xi=x, from the observation of an i.i.d. sample (Xi,Yi)∈ℝ^d, i∈{1,…,n}. We assume that f depends only on r unknown components with typically r≪d.We provide an adaptive fully-nonparametric strategy based on kernel rules to estimate f. To select the bandwidth of our kernel rule, we propose a new fast iterative algorithm inspired by the Rodeo algorithm (Wasserman and Lafferty, 2006) to detect the sparsity structure of f. More precisely, in the minimax setting, our pointwise estimator, which is adaptive to both the regularity and the sparsity, achieves the quasi-optimal rate of convergence. Our results also hold for (unconditional) density estimation. The computational complexity of our method is only O(dnlogn). A deep numerical study shows nice performances of our approach.
Fichier principal
Vignette du fichier
21-0582.pdf (1.27 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-02085677 , version 1 (31-03-2019)
hal-02085677 , version 2 (28-06-2021)
hal-02085677 , version 3 (22-10-2022)

Identifiants

Citer

Minh-Lien Jeanne Nguyen, Claire Lacour, Vincent Rivoirard. Adaptive Greedy Algorithm for Moderately Large Dimensions in Kernel Conditional Density Estimation. Journal of Machine Learning Research, 2022, 23 (254), ⟨10.5555/3586589.3586843⟩. ⟨hal-02085677v3⟩
313 Consultations
192 Téléchargements

Altmetric

Partager

More