Nonparametric drift estimation for i.i.d. paths of stochastic differential equations - Archive ouverte HAL
Article Dans Une Revue Annals of Statistics Année : 2020

Nonparametric drift estimation for i.i.d. paths of stochastic differential equations

Fabienne Comte
Valentine Genon-Catalot
  • Fonction : Auteur
  • PersonId : 1037577

Résumé

We consider N independent stochastic processes (Xi(t), t ∈ [0, T ]), i = 1,. .. , N , dened by a one-dimensional stochastic dierential equation which are continuously observed throughout a time interval [0, T ] where T is xed. We study nonparametric estimation of the drift function on a given subset A of R. Projection estimators are dened on nite dimensional subsets of L 2 (A, dx). We stress that the set A may be compact or not and the diusion coecient may be bounded or not. A data-driven procedure to select the dimension of the projection space is proposed where the dimension is chosen within a random collection of models. Upper bounds of risks are obtained. March 28, 2019
Fichier principal
Vignette du fichier
Driftiid_3.pdf (617.61 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02083474 , version 1 (29-03-2019)

Identifiants

Citer

Fabienne Comte, Valentine Genon-Catalot. Nonparametric drift estimation for i.i.d. paths of stochastic differential equations. Annals of Statistics, 2020, 48 (6), pp.3336-3365. ⟨10.1214/19-AOS1933⟩. ⟨hal-02083474⟩
83 Consultations
395 Téléchargements

Altmetric

Partager

More