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NONPARAMETRIC DRIFT ESTIMATION FOR IL.1I.D. PATHS OF
STOCHASTIC DIFFERENTIAL EQUATIONS

F. COMTE®, V. GENON-CATALOT®™

ABSTRACT. We consider N independent stochastic processes (X;(t),t € [0,7]),i=1,..., N,
defined by a one-dimensional stochastic differential equation which are continuously observed
throughout a time interval [0,7] where T is fixed. We study nonparametric estimation of the
drift function on a given subset A of R. Projection estimators are defined on finite dimensional
subsets of L2 (A, dz). We stress that the set A may be compact or not and the diffusion coefficient
may be bounded or not. A data-driven procedure to select the dimension of the projection space
is proposed where the dimension is chosen within a random collection of models. Upper bounds
of risks are obtained. March 28, 2019

Keywords and phrases: Diffusion process, Hermite basis, Laguerre basis, model selection, non-
parametric drift estimation, projection estimators.

AMS Classification. 62G07-62MO05.

1. INTRODUCTION

Consider N independent stochastic processes (X;(t),t € [0,7]), ¢ = 1,..., N with dynamics
ruled by the following one-dimensional stochastic differential equation:

(1) dX;(t) = b(X;(t))dt + o(X;(£))dWi(t), X;(0) ==z, i=1,...,N,

where zg € R is known, (Wi,..., W) are independent standard Brownian motions. The drift
function b : R — R is unknown and our aim is to study nonparametric estimation of b from
the continuous observation of the N sample paths throughout a fixed time interval [0,7]. This
problem is typically part of functional data analysis which is devoted to analysis of samples of
infinite dimensional data (see e.g. Ramsay and Silverman, 2007, Wang et al., 2016). In econo-
metrics, authors also refer to panel or longitudinal data analysis where data from a sample of
individuals are collected over time (see e.g. Hsiao, 2003). In most cases, functional data are
modeled with parametric approaches, often using mixed effects non-linear models. In particular,
several recent contributions concern i.¢.d. parametric models of stochastic differential equations
with mixed effects (see e.g. Ditlevsen and De Gaetano, 2005, Overgaard et al., 2005, Piccini ef
al., 2010, Piccini and Ditlevsen, 2011, Comte et al., 2013, Delattre and Lavielle, 2013, Delattre
et al., 2013, Dion and Genon-Catalot, 2016, Delattre et al., 2018). Note that i.i.d. samples of
stochastic differential equations have been used recently for multiclass classification of diffusions
(see Denis et al., 2018). However, the need of flexibility to deal with the information contained
in functional data analysis make it preferable to use a nonparametric approach.
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Drift estimation for one-dimensional diffusion processes has been widely investigated since the
80’s. Whether by a parametric or a nonparametric approach, authors have focused on estimation
from one trajectory observed on a time interval [0, 7] with continuous or discrete sampling. An
asymptotic framework is standardly chosen for the study: either T is fixed and the diffusion
coefficient tends to 0, or T tends to infinity and ergodicity assumptions on the model are gen-
erally required. Moreover, when nonparametric estimation is performed by projection methods,
the drift function is generally estimated on a fixed compact subset of R. Nevertheless, when
practical implementation is done, the compact set is chosen equal to the random data range
which contradicts the theoretical results (see, for reference books, e.g. Kutoyants, 1984, 2004,
Iacus, 2008, Kessler et al., 2012).

In our context, ergodicity is not required for Model (1), T is fixed and the asymptotic framework
is N tends to infinity. The diffusion coefficient ¢ is supposed to be known as it is identified from
a continuous observation of the sample paths. We fix a subset A of R and consider the estimation
of bs := bl by a projection method on finite dimensional subspaces of L?(A4,dx). The set A
may be compact or not and the drift function b4 need not be square-integrable. When A = R™
or R, we consider subspaces of IL?(A, dx) generated respectively by Laguerre functions or Her-
mite functions. These subspaces have been recently used for nonparametric density or regression
function estimation (see e.g. Comte and Genon-Catalot (2018a-b, 2019)). We propose nonpara-
metric projection estimators of b4 and evaluate risk bounds for their L2-risk. This risk is defined
either as the expectation of an empirical norm or as the expectation of a L2(A, fr(z)dz)-norm
where the density fr(z) is equal to 77! fOT dt p¢(xo, x) and py(z,y) is the transition density of the
diffusion model. A data-driven procedure is proposed to select the dimension of the projection
space. Due to the non compacity of the set A, specific bounds for the risks are obtained.

In Section 2, the projection estimators are defined and their risks are studied on a fixed projec-
tion space, assumptions and rates of convergence are discussed. Section 3 concerns the adaptive
procedure. A specific difficulty arising from the non compacity of A is that the data-driven se-
lection of the projection space dimension must be chosen within a random set. The case where o
is bounded on A is easier. The penalty term has the usual form and depends on ¢ only through
a single upper bound, ||[014|lc. For unbounded o, the study is complicated by the fact that
the penalty has an unusual form and is random. A short recap on Laguerre and Hermite bases
is given in Section 4 and numerical simulations illustrate the estimations method. Section 5
gives some concluding remarks. Section 6 contains proofs. Some parts of proofs and technical
lemmas are borrowed from Comte and Genon-Catalot (2018b, 2019). A Chernoff-type inequality
for random matrices (see Tropp (2012)) used in proofs is recalled in Section 7.

2. PROJECTION ESTIMATORS OF THE DRIFT ON A FIXED SPACE.
2.1. Assumptions. We consider the usual assumptions ensuring that equation (1) admits a
unique strong solution adapted to the filtration (F; = o(Wi(s),s < t,i=1,...,N),t > 0):

e Either (H1): The functions = + b(z) is C! and z +— o(z) is C? on R, and both have
linear growth.

e Or (H2): The function x — b(z) is Lipschitz and the function z +— o(z) is Hélder with
exponent « € [1/2,1]. This implies that both b and o have linear growth.

Thus
(2) JK > 0,Vz € R, b*(z) + o*(x) < K(1 + 2?%).

Assumption (H1) is standard and Assumption (H2) is fulfilled e.g. by o(z) = /zy (Cox-
Ingersoll-Ross process). Under (H1) or (H2), the Markov process (X;(t)) admits a transition
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density p;(z,y) jointly continuous in (¢, z,y) on RT x (¢,7) x (¢,r) where (¢,7) is the state space
of (1) (see e.g. Rogers and Williams, 1990, chap. V, Section 7). Morevover, as the initial
condition zg is deterministic,

(3) Yk >0,vt >0 sup E(X(u))** = sup /yz’“pu(xo,y)dy < +o00.
0<u<t 0<u<t

The following density which is well defined plays an important role in the sequel:

T
(4) fr(y) = ilf/o pu(xo, y)du.

By (3), fr has moments of any order. From assumptions (H1) or (H2) and (3), we have, for all
k:

[ (= 0nw) + o o) an] = (6% + o™ sy < oo

1
o
2.2. Definition of projection estimators. The following notations are used below. For h a
function, we denote ||h|| the L?>norm of L?(A,dz), ||k f, the L?norm of L%(A, fr(x)dz) and
set hg = hl and ||h|le = sup,c4 |h(x)| for the sup-norm on A. The Euclidean norm in R™ is
denoted by ||.[|2,m-
To define nonparametric estimators of the drift function b, we proceed by a projection method.
Consider a set A C R and a family (S,,,m > 0) of finite-dimensional subspaces of L?(4, dx),
where each S, is endowed with an orthonormal basis (¢;,j = 0,...,m — 1) of A-supported
functions and we estimate by := bl 4. The basis of S, may depend on m but for simplicity, we
omit this dependence in the notations. We assume that the basis functions ¢; are bounded so
that S, C L2(A, fr(x)dz).
Then, for ¢t : R — R a function, we introduce the contrast:

([T S, .
©) ()= gp 3 () FCatin—2 [T o)
and note that, for any bounded ¢, as E fOT t2(X1(u))o? (X1 (u))du < +oo,
T T
Eyn(t) = %E /0 (X0 (1)) — b(X1 (w))]? du — %E /O B2(X () )du

- / ((y) — b(w))? fr(y)dy — / B (y) fr(y)dy.

This property justifies the definition of a collection of estimators b, m > 0 of by := bly by
setting:

by, = i t
(7) arg min vy (t)

Thus, for each m,

3
L

(8) by = 7P

<.
Il
o
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where the vector of coefficients é(m) = (éo, .oy,0m—1)" can be easily computed. Indeed, define
the m x 1-vector

~ 1 M7
(9) 7, - (NT; /0 wj(Xi(u))dXi(u)>

and the m x m-matrix

N 1 XT
(10) W, = (NT;/O wj(Xz'(U))w(Xz‘(u))du>

§=0,....,m—1

7,£=0,....m—1
Then, provided that \T/m is a.s. invertible,

We introduce the empirical norm and the empirical scalar product associated with our observa-
tions. For t(.), s(.) two bounded functions, we set

T N T
(12) ||t||%V=N1TZZ | ), <s,t>N:N1T; | s

1 X T
(13) t) = 577 2 [ U)X )W)
=1

Therefore, E|t]|3 = HtH?cT, E(s,t)n = (s,t)f, and Evn(t) = 0, EvZ (1) = HtO’H?cT/NT. Using
these notations, we obtain:

~

2771: (<90]ab>Naj :07"'7m_ 1)/+Em \Ilm: (<903790€>N7¢7752077m_1)

where
(14) Em = (vn(g;),j=0,...,m—1)
is a centered vector. Using (8)-(11), one easily checks that yx (bm) = —||bym|% -

2.3. Risk bound. For M a matrix, we denote by Tr(M) the trace of M and by ||M]||op the
operator norm defined as the square root of the largest eigenvalue of M M'. If M is symmetric,
it coincides with sup{|\;|} where \; are the eigenvalues of M. Moreover, if M, N are two matrices
with compatible product M N, then, ||MN||op < || M||op||N|lop. For M a symmetric nonnegative
matrix, we denote M'/2 a symmetric square root of M.

Let us set the following assumption:

(15) L(m) := sup Z go?(a:) < 400.

It is easy to see that the quantity L(m) depends on the space S, but not on the choice of the
IL2(A, dz)-orthonormal basis of S, used to compute it. Indeed, L(m) = SUPseg,, ||t]|=1 SUPzeA t2(z).
If the spaces Sy, are nested, i.e. m < m' = S,, C S,,s, then the map m — L(m) is increasing.
Throughout the paper, the length-time interval T is fixed and the asymptotic framework is N
tends to infinity. Without loss of generality, we assume that T is an integer with 7' > 1. Though
fixed, the value of T may have an impact on the performances of the estimators. This is why all
bounds will be expressed as negative powers of NT.
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To ensure the existence and stability of the estimator, we insert a cutoff and define, for m > 1,

= s ~ 1—1og(2)
(16) bm = O {1 () (|5 opv1) < NT log(NTYY T = g
Let us define the following m x m matrices:
(17) \Pm:E{I\Jm:(<Q0j,Q0@>fT,],£:0,,m—l),
(18) \Ijm,a2 =E (EmE;n) = (<0-S0]’ O-S0€>fT7j7£ = 07 cee, M — 1)

(see (14)). Under mild assumptions on the basis (¢;), the matrix ¥y, is invertible as for instance
the ones given in the following lemma.

Lemma 1. Assume that \(A Nsupp(fr)) > 0 where A is the Lebesque measure and supp(fr)
the support of fr, that the (¢j)o<j<m—1 are continuous, and that there exist xo,...,Tm—1 €
Ansupp(fr) such that det[(¢;(xr))o<jr<m—1] # 0. Then, U, is invertible.

The proof is elementary using that, for v = (ug, ..., um—1)’,
2

m—1
u'\I/mu:/ > uiei(y) | fry)dy.
j=0

In particular, if (¢;)o<j<m—1 is the Laguerre or the Hermite basis (see Section 4), ¥y, is invertible.

By convention, when M is a symmetric non negative and non invertible matrix , we set
|M~1|op = 400, a convention which is coherent as when M is invertible, |M ||, = 1/inf{);}
where {);} are the eigenvalues of M.

Proposition 1. Consider the estimator b of ba. Then for m such that
cr NT

(19) Lm) (|9, lop V 1) < 2 loa(NT) and m < NT

with c¢p given in (16), we have

(20) Bl —bal3] < inf 1= bal, + T o)+ SO,
tESm NT : NT

and

- 1-— 10g(2) Tr[qj;zlqlm 02] 2 (T)
91) E[||bm —bal2] < (14— ’
(1) E| all] < < + 210g(NT)) NT NT

where c1(T), co(T) depend on T through [ o’ (y)fr(y)dy and [ b4 (y)fr(y)dy.

Actually, we can prove that m < L(m)||¥,!|lop and m < NT is automatically satisfied (see
Lemma 4 in Comte and Genon-Catalot (2018b)).

In the framework of standard regression with independent data, Y; = b(X;) +¢;,1 = 1,...,n,
Cohen et al. (2013) introduced condition (15) on the space Sy, and (19) on the possible di-
mensions (see also Comte and Genon-Catalot (2018b, 2019)). The restrictions on the choices of
m imposed by (19) have the effect of stabilizing projection estimators. If m is too large, then,
estimators become very unstable and the precise cutoff for stability is proportional to n/logn in
the regression model, or NT'/log(NT') in our case.

Note that [|[¥,op = SUDteS,, [t]] 7 =1 |t]|? (see Proposition 2 in Comte and Genon-Catalot,

inf ||t —ball% +8
tg}gm\l All7, +

2018b) so that, for nested spaces, m + ||[¥,}|op is increasing.
From the variance bound in (20), we cannot deduce a precise rate as a function of m. Nevertheless,
this bound verifies:
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Proposition 2.
(1) Let S, be nested spaces, then m +—> Tr[\I’;ll\I/m,Uz] s increasing with m.
(ii) If o is bounded on A, Tr[U, 10, o] < m|oal%.

Classically, in projection methods, the set A is chosen to be compact. If A is compact, o4 is
automatically bounded, Proposition 2 applies, and we obtain a variance bound of order m/(NT).
In addition, if A is compact, it can be assumed that fr is lower bounded on A, say by fo.
Then we have || ¥,;}|op < 1/fo. Indeed for @ = (ug, ..., um—1)" a vector of R™, @’ ¥, i is equal

to
2 2

m—1 m—1
/ S wigs() | fr(oyde > fo / S wig;(x) | dz = follitl2, .
a\i3 a\ =

Therefore, the stability condition (19) simplifies into m < ¢NT'/log(NT') where ¢ depends on T’
and fg.

If A is not compact, | ¥, }|op may be unbounded as a function of m and may increase the
variance rate. For instance, in the case where (¢;) is the Laguerre basis on A = RT or the
Hermite basis on A = R, it is proved in the above quoted paper, Proposition 8, that for any
underlying density fr, [|[,}||op > c¢y/m for some constant ¢ (see Section 4 for the definitions of
the Laguerre and Hermite bases).

2.4. Rates of convergence. Some conclusions can be drawn from Propositions 1 and 2 concern-
ing the rates of convergence of the projection estimators. In Comte and Genon-Catalot (2018b),
to assess the bias rate, the following regularity set is proposed and justified:

W3 (A, R) = {h € L2(A, fr(x)dz), Ve > 1,||h — hiT||3, < RK*S} ,

where h{T is the L?(A, fr(x)dz)-orthogonal projection of h on Sy. If by belongs to Wi (A R),

S

then the square bias satisfies Hb,];ff - bAH}T < Rm~*.
Then, the best compromise between hias and variance terms is obtained defining m* by the
implicit relation (m*)~* = Tr[¥, } W, o2]/NT and yields a rate of order (m*)~*.

If o is bounded on A (see Proposition 2), and if m* = (NT)'/(5*1) satisfies (19), we find the rate

sz}m* _ bAH?fT] < (NT)fs/(erl).

Let us stress that our context is hitherto unstudied and although this new rate looks familiar,
the optimal rate for this problem is not known.

The next section is devoted to data-driven choices of the dimension of the projection space
and yields an adaptive estimator, i.e. achieving automatically the best compromise between
square bias and variance terms. This is especially interesting in our case where the exact rate is
implicit.

3. DATA-DRIVEN PROCEDURE
Let us consider now the following assumption.
(A1) The collection of spaces Sy, is nested (that is Sy, C Sy for m < m’) and such that, for
each m, the basis (pq, ..., pm—1) of Sy, satisfies
m—1
(22) L(m) = || Z cp?Hoo < c?om, for ¢, >0 a constant.
§=0

(A2) [|f7[loc < +oo.
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Clearly, Assumption (A1) is fulfilled by classical compactly supported bases, such as histograms
and trigonometric polynomials, and also by Laguerre and Hermite bases, which are non compactly
supported, see Section 4. Note that L(m) does not depend on the basis, but the bound c?om
does depend on it. In Section 3.3, we give sufficient conditions ensuring that (A2) holds. We
consider the following collection of models, for 6 a positive constant specified below:

— ~ NT
2 0) = 1,2,...,NT}, Em(|9, 2, V1) <0——
(23) Fn(8) = {m € (1.2, NT, (185113, v 1) < 0
and its theoretical counterpart
0 NT
_ 2 -1
(24) My (0) = {m e{l,...,NT}, c,m (||¥,, ||Op V1)< 1loa(NT) (NT)}

Note that, analogously as for || ¥, |op, m H\/I\lgfﬂop is increasing,.

Under (A1), the condition in the definition of My(6) is to be compared with the stability
condition (19) which writes cZm(|[ ¥ lop V 1) < (¢7/2)(NT/ log(NT)). The condition imposed
in MN(H) is thus stronger as, clearly, (||, 1H0p V1) < (|¥,;112, V 1). The same remark holds

between MN( ) and the cutoff used to define by, (see (16)).

The aim here is to define a data-driven procedure for selecting the dimension m of the pro-
jection space in such a way that the resulting estimator is adaptive, 4.e. that its L2-risk realizes
automatically the best compromise between the bias and the variance term. For this, we distin-
guish the case where o4 is bounded or not as the method is different. In both cases, we need the
Bernstein Inequality for continuous local martingales, see Revuz and Yor (1999, p.153), that we
state in our context.

Lemma 2. Let My := NTvn(t) (see (13)) and (M) = fo i1 N 2(X;(w)o?(X;(u))du. Then,

NT
P(Myp > NTe, (M) < NTv?) < exp (— 5 25 > )
v
3.1. Case of bounded o4. If ¢ is bounded on A, proofs are simpler. We have that (M) <
NT|loal%|t]|% and from Proposition 2, the variance term of the risk bound is upper bounded
by [loallZm/NT .
Let us define, under (A2),

1 1
(25) or = <3A ||fT\oo> T

where ¢y is a numerical constant computed in the proof of Theorem 1. Now we set

~ . 7 . m
(26) n=arg min  {—bul} +pens(m)},  with  pen;(m) = #o3 oo

meMy (o)
where x is a numerical constant. Note that |0%||com/NT is an upper bound on the variance
term obtained in Proposition 1 (see Proposition 2).

Theorem 1. Let (X;(t),t € [0,T])1<i<n be observations ruled by model (1). Assume that (A1),
(A2) hold and that ||0%]lcc < oo. Then, there exists a numerical constant ko such that for
K > Ko, we have

A o
2 . 2
Bllbs —ball] <€ _nf - ((inf o=t + pens(m)) + 57
and
b 2 : . 9 C]
Blllbs —balf,] < Cv_inf (g Jlba—tlf, +pens(m) ) +
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where C,Cy are a numerical constants and C',C| are constants depending on T through || f7 s,

ok fr(v)dy, [oh(y)fry)dy.

Theorem 1 says that by automatically realizes the compromise between the squared-bias term
and the variance term, on the collection My (97).

The penalty contains ||o4||co. As we assume a continuous observation of each sample path,
it is well known that the function o is identified from such an observation. Therefore, o can
be assumed to be known. Note that the estimation procedure for IA)m and m only depends on o
through ||oal|s. In practice, to implement the adaptive procedure, we can use a simple estimator
of ||g4|le built from discretisations of the observed trajectories with very small sample step.

In the definition of the sets My (07) and M\N(OT), there appears || f7||co, which is unknown. In
theory and in practical implementation, we can simply replace 97(NT)/log(NT) by NT/log*™(NT),
€ > 0, provided that N is large enough.

The constant k is a specific feature of the model selection method. Theorem 1 states that,
under the assumptions of the theorem, for any function b, there exists a numerical (universal)
constant kg such that the inequalities hold for all K > kg. The proof provides a numerical value
ko which is too large. Finding the best value kg for a given statistical problem is not easy.
For instance, this topic is the subject of Birgé and Massart (2007) paper in the Gaussian white
noise model where the authors prove that x > 1 is required in this case. Thus, for practical
implementation of the adaptive estimator, it is standard and commonly done that one starts by
preliminary simulations to obtain a value of k closer to the true one. Afterwards, this value is
fixed once and for all.

3.2. Case of unbounded o 4. Here, the estimation procedure depends on the complete knowl-
edge of o and of the constant K such that o?(z) < K(1 + 22) (see (2)).

To study the case of unbounded o4, it is natural to consider that A is non compact. In the
following, we consider the Laguerre and Hermite bases (see Section 4), and introduce the specific
assumptions:

(A3) There exists ¢ > 0 such that for all m > 1, [|[ ¥ 1|2 > emP with 8 = 4 for Laguerre
basis and 8 = 5/3 for Hermite basis.

(A4) The function o? is lower bounded on A: o2(z) > o2 > 0.

For the Hermite and Laguerre bases, ||¥,![|2, > c¢m, see Comte and Genon-Catalot (2018b),
Proposition 8. Consequently, (A3) is a stronger constraint: our conjecture, based on numerical
simulations, is that it is related to the rate of decay of fr near infinity. Under (A4), the state
space of the processes X;(t) is R; nevertheless, it is possible to estimate b on RT using the
Laguerre basis. Moreover, if o is not lower bounded, the result below still holds replacing (A4)
by the technical condition (56).

Let

1 —log(2)
14T Bo?

with 97 is defined in (26), B = 21K for Laguerre basis, B = 2KC?, for Hermite basis (see the
definition of C' in Section 4), K is defined in (2) and set

(27) fr =0r A

(28) iv=arg  min  {|bl} +pony(m) }
mGMN(fT)
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where

m(1+ ) (14 9020, 0200, | op
NT ’

(29) peny(m) = K1

with k1 a numerical constant, (¢,,) is a sequence of nonnegative numbers. The matrix \/I\lm’gz is
the empirical counterpart of ¥,, ;> (see (18)):
(I\lm’gz = ((opj,000)N, 5, =0,...,m—1).
Theorem 2. Let (X;(t),t € [0,T])1<i<n be observations ruled by model (1). Assume that (A1)-
(A4) hold. Let the sequence (£y,) be such that 1 < £, < NT, for m € My (fr) and
(30) D il flop e <3
meMy (16§7)

Let
(Lt ) (L [V 0 2 W o)

NT '

Then, there exists a numerical constant kg such that for k1 > ko, we have

(31) peny(m) = K1

~ C/
E[|bs — ball3] < inf inf — |2
lom—balBe) < € _jnt (i [oa =l +pens(m)) +
and
E[Hi% —ball7,] <C1 inf inf ||ba — t[|3. + peny(m) Cl
m Jrd = My Gr) \t€Sm Jr TN

where C,Cy are a numerical constants and C',C are constants depending on ¥ and depending
on T through [ b4 (y) fr(y)dy, [ o™ () fr(y)dy, || frlleo-

As previously, the penalty is obtained using an upper bound m(1+€m)(1+\|\ll;11/2\11m’02 w2 llop)/NT
of the variance term given in Proposition 1. Theorem 2 thus states that the compromise between
the squared-bias term and the variance term, is automatically realized by Bm, on the collection
My (1)
Under (A4), Tr(9,,*W,, »0,,"?) > 62m and ||¥;,/* 0, 0,
peny (m).
In Comte and Genon-Catalot (2018b), examples of densities for which || ¥, 1| op is upper bounded
by O(mF) are given. In such a case, we can take £, = 1 for all m, and (30) holds.

mllop > 02, thus peny(m) =

~

3.3. About assumption (A2) and some extensions. Recall that, for h continuous and
bounded, s — Eh(X(s)) is continuous and therefore, 7! f(;f En(X (s))ds = [ h(y)fr(y)dy is
well defined so that the density fr is always well defined.

When the transition density is explicit, we can check (A2) directly. For instance, assumption
(A2) holds for the Brownian motion with drift, for the Ornstein-Uhlenbeck process or for the
geometric Brownian motion. More generally, the following result holds.

Proposition 3. (i) Ifo(z) =1, b is Ct, |b| + |b/| < M, then || frleo < +00.
(ii) If o is C?, o/, ¢" bounded, o lower bounded by oq > 0, b is C' and b,b' bounded, then
[frlloc < +o00.
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Our study concerns a fixed initial condition zq for the diffusion model. This is not mandatory.
We may also consider the model

(32) AXi(t) = b(Xi(D))dt + o (Xi())dWi(t), Xi(0) =mi, i=1,...,N.

where the initial conditions n; are i.i.d. random variables independent of (W7,...,Wy), with
common distribution x on R, such that En?* < 4o, for k large enough. In this case, X;(s) has
distribution [ pu(dz)ps(z,y)dy. It is enough to replace fr = f7° by

_1 Tds p(dx)ps(z,y).
JJ!

In particular, if model (32) is positive recurrent with invariant distribution 7(y)dy and n has
distribution 7, then [, w(dx)ps(z,y) = m(y) for all s, implying that f7 = m. The assumption
| frlleo < 400 becomes ||7|loc < 00. So ||.|lf = |I.|lx is fixed, the constants ¢1(T),c2(T) in
Proposition 1 no more depend on T, and thus the risk bound (especially the variance term) is
improved when T' gets large.

4. SIMULATION STUDY

We propose a brief simulation study to illustrate the estimation method. Implementation is
done with either the Laguerre basis (A = R™) or the Hermite basis (A = R). We recall their
definition.

e Laguerre basis, A = RT. The Laguerre polynomials (L;) and the Laguerre functions (¢;) are
given by

(33) :Z <)k' 0i(x) = V2Lj(2x)e "1,50, 5 > 0.

=0

The collection (¢;);>0 is a complete orthonormal system on L2(R") satisfying: Vj > 0, Vz €
1€;(x)] < V2, see Abramowitz and Stegun (1964, 22.14.12) The collection of models (S, =

span{{o, ..., lm_1}) is nested and obviously (22) holds with ¢, = 2.
e Hermite basis, A = R. The Hermite polynomial and the Hermite function of order j are given,
for j > 0, by:
B Hi) = (1), () = Hy e o = (@)
The sequence (h;,j > 0) is an orthonormal basis of L?(R,dz). Moreover (see Abramowitz and
Stegun (1964, 22.14.17), Szegd (1975) p.242), [|h;lleo < ®o, Po =~ 1,086435/7/4 ~ 0.8160, so
that (22) holds with ¢, = ®§. The collection of models (S, = span{ho, ..., hm—1}) is obviously
nested. Moreover, ||h]loo < Coo(j+1)7Y12 j = 0,1,... where the constant Co, given is in Szegd
(1975). Thus in this case, L(m) < C2mb5/6.

Laguerre polynomials are computed using formula (j + 1)Lj1(z) = (25 + 1 — z)Lj(x) —
jLj—1(x), Lo(x) =1, L1(x) = 1 — = and Hermite polynomials with Ho(xz) = 1, Hi(z) = x and
the recursion Hy,11(z) = 2¢H,(x) — 2nH,_1(x), see Abramowitz and Stegun (1964, 22.7).

We simulate discrete sampling of four models, one by Euler scheme, and the others by exact
discretization. All our models admit a stationary distribution. When models are randomly
initialized, the initial variable follows the stationary density and (A2) is fulfilled..
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Example 1, X;(0) =0 Example 2, random X;(0)

15 -1 0.5 o 05 1 15 -1 -08 06 -04 02 O 02 04 06 08 1

Hermite basis 7 = 4.7 (1.0) Hermite basis 7 = 6 (1.1)
Example 3, random X;(0) Example 3, random X;(0)
Hermite basis 1 = 6.4 (0.6) Laguerre basis m = 5 (1.0)
Example 3, X;(0) =1 Example 4, random X;(0)
Laguerre basis 1 = 5.8 (1.2) Laguerre basis m = 4.2 (0.5)

FIGURE 1. 20 estimated curves in Hermite or Laguerre basis (grey-green), the
true in bold (black/red), N = 100, T' = 10.

Example 1. Hyperbolic diffusion. The model dX; = —0X;dt + vy/1 + X2dW;, Xo = 0, is
simulated by a Euler scheme with step A. We chose §# = 2 and v = /1/2. Model 1 satisfies (H1).

The other examples are obtained from a d-dimensional Ornstein-Uhlenbeck processes (U;(t))¢>o0,
with dynamics given by

2
(35) dUi(t) = = 5Ui(#)dt + 2dWia(t),  Us(0) ~ Ng(0, L) or U(0) = 0.
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Here W; 4 is a d-dimensional standard Brownian motion. Exact simulation is generated with
step A by computing
_rA 72(1 — e_TA)

Uz((k + 1)A) =e 2 UAkA) + 51((]{ + I)A), EZ(kA) ~iid ./\/'d(O, de)
Example 2. X;(t) = tanh(U;(t)) where U;(t) is defined by (35) with d = 1 is solution of (32)
with

2 r 7 v 2 :

b(z) = (1 —2z) <—2atanh(x) - 4x> , o(x) = 5(1 —z*), with r =4 and v = 2.
Here, X;(t) has state space [—1, 1], so that b and o are bounded on this domain and (H1) holds.
Example 3. X;(t) = exp(U;(t)) where U;(t) is defined by (35) with d = 1 is solution of (32)
with

r 0a o] :
b(z) =x —§log(x+) + <) o(x) = §x+, with r =1 and v = 2.

For example 3, neither (H1) nor (H2) hold for b.
Example 4. Cox-Ingersoll-Ross or square-root process. We take X;(t) = ||Ui(t)|\§7d where U;(t)
is defined by (35) with d = 3 is solution of (32) with

d
dX;(t) = (% — 1 Xi(8))dt + v/ X () AW (
where W}*(t) is a standard brownian motion. We take k = 2 and v = 1. Model 4 satisfies (H2).

In all cases, samples (X;(kA))i<i<ni<k<n, nA = T from the above models are generated,
with N = 100 and T = 10 obtained with n = 1000 and A = 0.01. For examples 1 and 2, the
Hermite basis is used; in example 3, both Hermite and Laguerre are experienced, and in example
4, we use Laguerre basis. Indeed, examples 3.4 provide nonnegative processes and are well suited
to Laguerre basis use.

The set M ~N(fr) is generally too small in practice to contain enough values of m to be visited.
Therefore a larger set given by M¥, = {m <10, mH\I/ 1||1/4 < NT'} is chosen.
The penalty is taken equal to pen(m) = /£||\I/ 1y, o2llop/(NnA) and m is selected as the

minimizer of —HBmH?\, + pen(m). After preliminary simulations, the constant « is taken equal to
k = 1, see the comment after Theorem 1.

Figure 1 shows 20 estimated drift functions by, (green/grey), and the true (red/black). We
stress that the value of 77 is rather small: under each graph, we give the mean 1 computed over
the 20 estimators, with standard deviation in parenthesis. Thus, we see that the function is very
well reconstructed using a small number of coefficients.

5. CONCLUDING REMARKS

In this paper, we study nonparametric estimation of the unknown drift of a one-dimensional
diffusion process from the observation of N 4.i.d. sample paths which are continuously observed
throughout a time interval [0,7]. The drift is estimated on a subset A of R by a projection
method where the set A may be compact or not, in the two cases of bounded or unbounded o.
In each case, an adaptive estimator is proposed.

The estimation procedures use some constants, which can be easily estimated, in particu-
lar || fr|lso defined by (4). Assuming that fr € L2(A,dz), the estimation of fT can be done

standardly by projection method. Let a; = (fr,¢;). Then a; = n~! Zl (T fo ©;(Xi(s))ds
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is an unbiased estimator of a; and we can define the projection estimator of fr on S, by
Jrom = Z}":_Ol a;p;. This estimator satifies

-
~ m

Bl = frl <17 = Sl + 50 = 3 0

]:

where |.|| is the usual L2-norm.
As we assume continuous observation of the sample paths, we can consider that o is known.
Nevertheless, it can be estimated by using discrete sampling with very small sampling interval.
For practlcal 1mplementat10n a discretisation with small step is required to compute the
quantities \I’m, Zm, \I/m »2. The theoretical study of drift estimation for discretely observed paths
would be of interest but probably tedious; it is left for further investigation.

6. PROOFS
We denote by x < y if there exists a constant ¢ such that x < cy.

6.1. Proof of Proposition 1. We start by defining the sets
~_ NT [1¢]/3 1
36) Api=1L U op V1) < op—e d Qp, = N 1<, VteSy, ;.

On Q,,, the empirical norm ||.||y and the L2(A, fr(z)dz)- norm are equivalent for elements of
Sm: (2/3)|1t]3 < ||t||?¢T < 2||t||3- Moreover, if &’ = (zg,...,Tm-1) € R™ and t = Z;”;OI TjQj,
then

[t} = TV,d and |t]|3, = TV, = ||UY2F]3,,, so that

sup |ltlRy — 1413, = sup (U — Up) T
tGSmyllt”fT:l FER™, H\Ijl/?ﬂH2 m=1
= sup ﬁ’\I/;LI/Q(\TJm — \IJm)\Il;ll/Qz_[‘

GER™ ||il]|2.m=1
= [P W — Td g fop.-

Therefore,
QO = {||xp7;1/2@mqf,;1/2 —Tdmllop < 1/2}.

The following lemma is analogous to Lemma 5 in Comte and Genon-Catalot (2018b) and deter-
mines the value of ¢r given in (16). Its proof is omitted.

Lemma 3. Under the assumptions of Proposition 1, for m satisfying (19) with ¢p given by (16),
we have, for c is a positive constant,

P(AS,) < o/ (NT)T, () < ¢/ (NT)'.
Now, we prove (20). For this, we write

o = baly = [lom — balRy1a,, + [10allRLag

(37) = [lbm = ballN1ann0m + [1m = bal 3 1a,n0s, + [ball R 1ag, == T1 + T + Ts.
We bound the expectation of the three terms above.

The last term T3 is the easiest:

1 < 1

< E/2 4 \pL/2(Ac
(38) ETy < E(balP(An) S Rz S e
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as

1

Tl </OT b%l(Xl(U))dU>2 < /bj(y)fT(y)dy < o00.

(39) E(llbally) < =

To study 71, T», let us introduce the operator Il,, : L2(A, fr(z)dz) — S,, of orthogonal projec-
tion with respect to the empirical scalar product (.,.)n, i.e. I,k is the function of S,, given
by
Ih = b3 = inf [lh— )3
teESm

Simple computations show that II,,h = Z;":_Ol Tip; where 7 = (70, ..., Tm_1) = @r—nl (5, h>N)O<j<m71‘
Thus, we can write: SIS

(40)  [[bm = ballRe = lIbm — onbal% + b = bal[fy = llbm — Wmbal3 + inf [ba —¢lI3

We have I1,,,b4 = Z;”:_Ol ajpj where gy = (Go,. .-, am-1) = e (@5, 04)N)o<j<m_1- Recall
that by, = Z;n;ol 0 with é(m) = U1 Z,, (see (9)). Hence, we have é(m) —Q(m) = VLB, (see
(14)) and

2
T [m—1

N

. 1 A N

o =Tabally = o [ | 0 —apesXit) | du
i=1 =0

1 L T , 2
= NT; /0 [(9<m>—a(m>) (05(Xi(u)) o< jem_1| du

~

= Opm) = 4m)) U Opm) — a(m)) = Ep Ut Eny.

Now, we look at T1 = ||bn, — bal|31a,n0m = ([|bm — Tmball3 + infies,, b4 — tl3)1a,.00,, (see
(37) and (40)).
On Q,,, all the eigenvalues of W '/2W, W-1/2 belong to [1/2,3/2] and so all the eigenvalues of
@%2@%1\1,%2 belong to [2/3,2]. Thus on €,,, we have, a.s.

E V-'E, = E U 12Ul201yl29-12F < oF O 'E,,.
Therefore

E (lbm = Wnballilo,on, ) S2E (D (Bl (Elel¥7 )i
0<j,k<m—1

2 T
— a2 e ([ emeea ) |

0<j,k<m—1

T

w(Xl(u))a(Xl(u))dWl(u))

2

2 . -
(4 =1 D Wkl Taelin = rTr(5 Uy 02).

0<j,k<m—1
So we obtain:

2
E(T}) < inf — 3+ ——Tr(v 1y )
( 1)_tg§meA tHfT+NT r(V ¥ o2)

Now, we look at Ty = ||by, — ba|31a,000, < (1bm — Mmbal + [16a]%)1a,.n0c, and find:

(42) Ty < (B, 9 Ey + [[ball3)1a,.005, -
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This yields, using the definition of A,,to bound \f';nl and the Cauchy-Schwarz inequality,
e N1 1/2/( 2 1/2 4 1/2
43 ET, < E E E. EY“||b P20

where we have already seen that E(||bal%) < [b%(y)fr(y)dy. The term E[(E),E,,)?] is ruled
by the following lemma which is proved below:

Lemma 4. With E,, defined in (14) (see also (13)), we have
2 mLQ(m) 4
E[(E;, Em)?] < CW oa(y) fry)dy
where ¢ 1s a numerical constant.

Plugging the result of Lemma 4 in (43) allows to conclude for all m satisfying (19), and
m < NT, that E(Ty) < ¢/(NT)? < ¢/(NT).
Joining the bounds for the expectations of T, T5, T3 gives Inequality (20).

Now, we prove (21). We have

(44)  E(l1bm — ball},) = E(Ibm = ballf, La,nnn) +Ebn — ballf, Lag,na,.) + 1ballF, PAT,)-

m

The last r.h.s. term is bounded by applying Lemma 3.
Next, we study the first term E(||b,, — bAH?leQmﬂAm)-

Let b7 denote the orthogonal projection of b on Sy, w.r.t. the L2(A, fr(z)dx)-norm and set
g="ba— bfnT, so that the bias term is equal to

= inf ||t =0 )
HngT tgé’m H AHfT
We have
b, —ba = by, — Iba +11ba — bg = by, — Iba + 19 — g.

where IL,,g = I,,ba — biT. As g is orthogonal w.r.t. the L2(A4, fr(z)dz)-scalar product to S,
and thus to b, — II,;,b4 + I1,,b4, we have

1bm = ball, = llbm — Tinba + gl + llglF,-
We can write:
The first term is the squared bias. The second term satisfies, by definition of Q,, and (41),
. A 8 _
2E(||br — b all7, 1a,m000) < AE(|bm — nball}1a,,00.,) < WTT(\IJml\Pm,UQ)'
For the third term, we have the following result which is proved later on.

Lemma 5. Under the assumptions of Proposition 1,

E(|Tmgll7, Lo,na,) < 2 inf ||t — balF,

LHQHQ _o_ T
log(NT) " log(NT)

Therefore, we conclude that

8
—Tr(P;,' T, 52).

7 2

2
o (NT)) 1nf [t —ball%, +
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Now, we look at E(||bm — ball?, Lag,na,,) (see (44)). We have P(Q5,) < ¢/(NT)7 and ||by, —

zAHQT < 2||(3m\|?T + 2||bAHfT' Therefore, only the term E[||Bm||3leﬂgnmAm] is to be studied. We
ave:

(46)
ol = | Zem () = Oy Uiy = 2T 0T 2 < [T 12, Wl 22 Zon
We have
2
1Pmllop = | Hsup TV, T = H ||s.up 1/ Z:Bj@j(u) fr(u)du < L(m).
T 2,m:1 z 2,m=

It follows by definition of A,, that

" orNT \? 1 PPN
4 E[)|bm |3, 1amn0s, ] < EY2((Z), Zm) P2 (Q5,).
(47) Wl nnrns) < (1ot ) B U P05
Now, we have (2’ 2 m)? < 4m Z;»Z)l(cpj,b)jlv + 4(E! E.,)?. By elementary computations,
E({¢j,0)%) < [(¢j(@)ba(2))? fr(z)dz. Therefore, by using Lemma 4,

(E@;ﬁmf)m < (fL [ o) ety + e e aA<y>fT<y>dy>1/2).

Joining the above with (47) yields

- c
49 Bl 100 < 57 (0400000 4 ([ a1 ).
So plugging (48) in (44) together with (45) yields the bound (21). O

6.2. Proof of Lemma 4. E((E/, E,,)?) = N41T4IE(F(M0(T), ooy My—1(T))) where F(zg, ..., Tm-1) =
Dy 01 x?) and M;( fo ( i i (Xi(u ))J(Xl(u))dWl(u)) By the Cauchy-Schwarz and
Burkholder- Davis—Gundy inequalities, we get:

E((E,En)?) < ¢

m 2 m
< cL()/Of‘a(y)fT(y)dy- m

6.3. Proof of Lemma 5. To compute |[II,,g]f,, let (¢;)o<j<m—1 be an orthonormal basis of
S w.r.t. the L2(A, fr(z)dz)-scalar product. If @; = EZL_OI a; ek and Ay, = (05 k)o<jk<m—1
then

Ty = ( / 2500 S = AmUnAL,
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so that A, is a square root of ¥, 1. Let C‘rm = (¢}, Pk)N)jk = Am\ffmA;n. The matrix ém
and U,,"/*9,,0,,/? have the same cigenvalues. Therefore, on Q. [|Gm — Idp|lop < 1/2, and
thus |G lop < 2 .

Now if II,,g = Z?:_ol Br@k, as (g —mg, @j)y =0for j =0,1,...,m —1, we get (g, ;)N =
(g, @508 = Y4y Br{@r: @j)n so tha

Gmgm = ((%%’)N)ogjgm—l = dm,

where £, = (Bo---PBm—1)". Therefore, on Qp,,

m—1
(49) TLngll7, = 1Bml3m = G dml3m < IGRH Eplldml13,m <4 (9,61 %
=0

Now, we note that

E((g, #)v) =E (NT >/ @(Xi(u))g(Xi(u))du) — (@5s9hp =0

m—1 )
2 u U
E par <ga(p]>N]-QmﬂAm S NT2 Z E [(/ QDJ Xl( )) (Xl( ))d ) ]
- Nl [HAmU ]

where 7 = (f (X1 ()g(X1 (u))dw)oziem-1. As [AmlZ, = 105 op, we get

1
e 195 o 1
E|Y (0@ loumm)| < T,
J=0
195 llop e o= (" ’
< TUPE Jz; | iK1 (u)g (X (u))du
12,
< I 1 im)|g)3, .

N
This, under (19) and reminding (49), implies

QTCT

E(||pgl[7,1 :

This gives the result of Lemma 5. O



18 F. COMTE, V. GENON-CATALOT

6.4. Proof of Proposition 2. Property (i) follows from Proposition 2.4 in Comte and Genon-
Catalot (2019)). For (ii), we can write:

Te (0,120, o W1 2] <m0 2w, 2 W12,

where
—1/2 —1/2 _ I —1/2 —-1/2_, __ /
||\Ijm / \I]m,a‘Q \Ijm / ”OP - sSup T \Ilm / \Ilm,UQ \Ilm / T = sup Yy \Ilm,UQy'
[lz]|2,m=1 UL 2 yll2m=1

Now, if ¢ is bounded on A,

m—1
YU ey = / (3 y0(2))20% (@) fr()da
j=0

IN

m—1
llolloo /(Z yii () fr(a)de = [|o% [l U1 2yll5 -
7=0

Thus, Tr \PT_rLl/z\Ilm’UQW;’LI/2i| < mHU%”oo- 0

6.5. Proof of Theorem 1 and Theorem 2. To deal with the random set M\N(H) (see (23)),
we introduce an additional set
NT

0) = 2m (| U2, V1) <40 ——— b = 166).
B0 MEO) = {me N m (1) < a0 b= My (o)
In the following, for simplicity, we shall denote My, My, M for My (or), My (or), M%(o7)
if o4 is bounded (case of Theorem 1), and for My (fr), Mn(fr), ML (fr) otherwise (case of
Theorem 2).

We denote by My (resp. My, My) the maximal element of My (resp. MY, My, (see (24)).
Let

(51) Ey = {MNCM\NCMX,}.

Proceeding as in Lemma 7 in Comte and Genon-Catalot (2018b) we can prove that, for the
choice of dp given in (25) with ¢y a large enough numerical value (¢g = 96 suits), and, for ¢ a
positive constant,

(52) P(E) =P ({ My & My or My ¢ M }) <

(NT)*
We write the decomposition: by —ba = (Em —ba)ls, + (l;m — bA)lE?v‘ As for the study of Th
defined by (37), starting from (42), we get
Iba — bl 3 1zs, < (BT B + [1ball3) 125, -

Now, as m € .//\/\IN,
2 DT NT

P 2 T—12 /

(EnrEnT)?.

Lemma 4 yields E[(EyEnt)?] < ccj(NT) [ 0% (y) fr(y)dy and thus E[(E, V-1E;)% < (NT)2.
This together with (52) implies, for C' a constant depending on [ o% fr, [ b% fr, and or,

- c
E[llba — balln1=g ] < NT
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It remains to study IE[HBm —ba31=y]. To begin with, recall that A (b)) = —HlA)mH?V Conse-
quently, we can write

= arg min {yn(bn) + pen(m)},
meMn

where pen(m) = pen;(m) defined by (26) if o is bounded on A and pen(m) = peny(m) defined
by (29) otherwise. Thus, we have, for any m € My, and any b, € Sy,,

(53) N (b)) + pen(i) < n (bm) + pen(m).

On Zy = {My C My © M5}, i < My < M and cither My < 1o < My < Mg or
m < My < M, N < M; In the first case, m is upper and lower bounded by deterministic
bounds and (53) a fortiori holds for any m € My; and in the second cas,

= arg min {y(bm) + pen(m)}.

Thus, on Zp, (53) holds for any m € My and any b, € S,,,. The decomposition v, (t) —v,(s) =
1t = bl|3 — ||s — bl|% + 2vn(t — ), where vy (t) is defined by (13), yields, for any m € My and
any by, € Sy,
b — bal% < llbm —a 13 + 20 (b — byn) + PT(m) — FR(r).
We introduce the unit ball and the set:
BT 0.1)={t € Sm+ S lltlyr =1} Q=[] Qm
mEME
where Q,, is defined by (36). We split again:
E[llbm — ballilzy] =E[bs — ballilzynay] + E[llbs — balilzynos,]-

The term E(||by, — balljlag,nzy) is bounded analogously as E(||by, — ballj1zs,), using that by
Lemma 3, P(Exy NQY) < 3, epqt PIQ) < d/(NT)S.

Then, we study the expectation on Zx NQy. On Qp, the following inequality holds: HtH?T <
2|t)|%, Vt € SMIJQ' We get, on Ex N Qy,
~ 1 -~ — —_— ~
16 = ballr <llbm = balliy + 21165 = binll7, + (8 sup  vR(t) + pen(m) — pen(r))
8 teB/T (0,1)

1 1 - .
<(143) low = bal} + 5l — balk +8( sup 1R @) — plm, )
teBIT (0,1) +

(54) + Ben(m) + 8p(m, i) — pen(rn).

Note that, in the case ||[o0allcc < +00, pen;(m) = pen(m) is deterministic. Therefore, we can
complete the proof of the first inequality of Theorem 1 applying the following Lemma.

Lemma 6. Assume that ||oal||cc < +00. Then there exists a numerical constant T such that for
p(m,m’) = 7lloall3,(m +m')/(NT),

R 1
El( sw @ —pmm) 1zynay | < cllodlorr
teBIT (0,1) +

m,m
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Indeed, we choose k£ > 87 in pen; (m) and the first inequality of Theorem 1 follows. For the sec-
ond inequality, we proceed as in the proof of Theorem 2 in Comte and Genon-Catalot (2018b). O

Proof of Lemma 6. When o4 is bounded, for ¢ a A-supported function,
(M)r = | Y (Xi(w)o*(Xi(u)du < NT|o|oo|t]F-

Thus, by Lemma 2, we obtain: P(vn(t) > e, [[t|3 < v?) < exp(—NTe?/(2]|0%||v?)). After-
wards, as in Comte et al. (2007), we use the LL?-chaining technique described in Baraud et al.
(Section 7, p.44-47, Lemma 7.1, with s = |0} ||c/T). O

Now we no longer assume o4 bounded and we consider Laguerre and Hermite bases to complete
the proof of Theorem 2. We have the following Lemma.

Lemma 7. Assume (A1)-(A4). Then there ezxists a numerical value 11 such that vy (t) satisfies

N C
]E < Sup V?V(t) _p(m7m)) 1ENQQN S ﬁ
teBIT (0,1) +

where p(m,m’) = sup(p(m), p(m')) with

m(1+ 6) |0 20, 2T o

NT

For k1 > 871, 8p(m,m’) < pen(m) + pen(m’) . Therefore, plugging the result of Lemma 7 in
(54) and taking expectation yield that

p(m) =m

1 - 3 C
L — bl Lzarny) <ol —bally + pen(m) + o
+ E(ﬁ(m)]‘ENmQN) + E[(pen(m) - ﬁ(m))-FlENﬂQN)'

Now we have the following Lemma, the proof of which is omitted as it is similar to Lemma 6.5
in Comte and Genon-Catalot (2019).

Lemma 8. Under the assumptions of Theorem 2, there exist constants c1,co > 0 such that for
m € My and m € My,

E(pen(m)l=zynay) < cipen(m) + NT
A e C2
E[(pen(m) — pen(m))+1zynay) < NT

Note that ¢z contains [ |04 [*150/8 £, Lemma 8 concludes the study of the expectation of the
empirical risk on =5 N Q. This gives the first inequality of Theorem 2. The second inequality
is obtained following the lines of the proof of Theorem 2 in Comte and Genon-Catalot (2018b).
O

6.6. Proof of Lemma 7. Define the set

[to |3 1
Qo> = — 1| <5, VEE S\ {0}, Qe = ) Qoe-

to||?
i1l A

We need the following Lemma, similar to Lemma 3, which determines the constant fr.
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Lemma 9. Consider Laguerre or Hermite basis. Assume that (A1)-(A4) hold. Then, P(Q 02) <
¢/(NT)® and P(Q 2) < ¢/(NT)®.
Note that

sup HtUH?T = sup L@V, 2d= sup ! ﬁ@;ll/zlllmvag‘l/;ll/zﬁ = \\111;1/2\11771702\1/;11/2]]();,.
el p=1 0L/ 2@]||2,m=1 llll2,m=1

This implies

(55) sup VR (1) < 0P, o WL Pl sup ().
tESm,HtHfT:l tESm,HtO'”fT:l

We have
E ( sup v, (t) —P(m)> lzynay | = E[T1(m)] + E[T3(m)]
£E S It gp=1 .
with A(m) i= (S, o1, -1 720~ p(m)) | Ti(m) = Alm)1zycn00, 20 and Ti(m) =
A(m)]_ENﬂQNﬁQ?V _,- Now, by using (55), we have

E[T}(m)] < [|¥,,"°T,, 5201 opE ( sup (1) - Q(m)> log |
t€Sm,lto =1 L
with g(m) = mim(1 + ¢p,)/(NT).
Following the proof of Proposition 3 in Comte et al. (2007) (see also Baraud et al., 2001,
Theorem 3.1 and Proposition 6.1, in the regression model case), there exists a numerical constant
71 such that

e_mgrn

E sup V]2\f(t)_Q<m)> lg, ,| <c
(tGSm,HthT:l + " NT

As a consequence, for the same numerical constant 7,

—mt.

E[TY (m)] < e [ W5,/ 02052 o,
Moreover || @@, 020"l op < @ lop | ¥ 02 ]lop, and we have
2

o
| o2llop = sup  ‘@¥,, ,2d= sup / > ajeiy) | W) frly)dy < m / o fr,
=0

|a@ll2,m=1 llall2,m=1
Therefore, for ¢; = c?o [ fr,

E[Ti(mVvim)] < > E[Tim)]<c Y. me ™m0 op < 13
m€M+ meM;
under condition (30). Thus, we get
C

E[( sup ij\f(t) - p(m, m))+1EN0QNmQN702] < NT®

teSm\/ﬁw”tHszl
Now, we have to study E[T5(m VvV m)]. First,

o m*(1 + )

plm) < "I oy [ ot < Ol G, < ONT
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as |, !|op > m under (A3) and m € M. This yields

Elp(m, m)1zynoynas, ,] < ONTPQY ;2) < ¢/(NT)™.
Second,

E[( sup  vR(D))lzynaynos, ] SEYZL sup wp(OPYA(Qn NO5 ).
tesm\/ﬁu”tHszl i tESAJ?\;J‘t”‘fT:l

Then, we write, setting M = M,! for sake of simplicity,

M-1 M-1 M-1

E( sup  vk(®) <MY B 10 e = MO Evk (1w, 0l)
tESMy”t”fT*l k=0 =0 k=0
2
< NT T Z E (/ v, (Xi(S))]k)QUQ(Xi(S))dS>
< CM/<MZ_1[\I/‘”2 WPk w) frlv)d Z P13 20 () ()
< e ) Ya4( T(y y_ @3 (y opoa(y) fr(y)dy
M3

< eVt [ oA frwdy < CNT / o4 0) Fr(v)dy

Thus,

E[( sup VR () 1zynornae, L] < o(NT)?/(NT)*?* = ¢/(NT)*.
t€Smyamlltl g =1 Mo

We obtain E[T%(m V)] < 1/(NT)2. This ends the proof of Lemma 7. O

Proof of Lemma 9. Analogously as for ,,, we have
_1/2- 1
Q2 = {|\1/m¥§\1/m702\1r V2 —Tdmllop > 2}.

Therefore, we apply the Chernoff matrix inequality stated in Theorem 1.1 of Tropp (2012). To
that aim, we write \I/_l/g‘llm o2 \11‘1/3 as a sum of independent matrices
m,o ) m,o

m,o? m,o?

N
—1/22 —12 1
v / \I/m,a2\I/ / = N ZKm,cr? (X

T
with K, 2(X;) = ¥ '3 (; / cpj(Xi(u))gpk(Xi(u))oz(Xi(u))du> v 2
0 0<j,k<m—1

Clearly, E(K,, ,2(X;)) = Id;, so that fimin = fimax = 1 and

NT

P(Q¢ ) <2mexp(—cr(1/2) R)

m,o?
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with ep(d) = (6 + (1 — 0)log(1 — ¢))/T and R is an upper bound on the largest eigenvalue of
K, ,2(X1). Now we have a.s.

T m—1
1K o (X1)llop = : / S wies (Xi(w) | o?(Xi(u))du
Hmllzm—l,y vl §=0

T m—1

< H\I’;jo.z”opjlj/(; Jgo @?(Xz(u))UQ(XZ(u))du

Now, we use that 02(z) < K (1+2?) with K known. If p; = ¢;, the Laguerre basis on A = R*, we
have [¢;]* < 2 and (see e.g. Comte and Genon-Catalot, 2018a, Section 8): z/;(x) = —%@H +
(j + 3)¢;(z) — 2¢;_1(z). This implies,

HKm,02 (X1)llop K(2m + 9m® + 9m” + m)H‘I’;%ﬁ lop < K(3m + 18m3)||\11;502 llop

<
< 2LKmP||V T L lop == R

If p; = hj, the Hermite basis on A = R, we have |h;| < Coo(j +1)"Y/12,j = 0,1,... (with the
constant Cy given in Szegd (1975)) and (see e.g. Comte and Genon-Catalot, 2018a, Section 8):

2zhj(z) = /2(j + 1)hjs1 + /25hj—1(
This yields
K02 (X1)llop < KCo(m™° 4+ 3m"/O)|W, 1, lop < 2KCEm" /|0 lop == R.

Let us note R = meH\Il;:UQ lop With (B,b) = (21K, 3) with Laguerre and (B, b) = (2KC2,11/6)
for Hermite basis. We obtain

P(0F, ,») < 2mexp (—cT<1/2> Akl >s N

m?[[ @, ollop
it m < NT and
NT
BmP||[ UL Lllop < er(1/2) .
(56) m H m70-2H p — CT( / )710g(NT)

Now, for o2(z) > 03, we get H\I/m 2llop < 8119, [lop, so that the above condition is satisfied if

NT
Bo2m®||w ! < 1/2) 0—r——.
By definition of My and under (A3), we have m®||[ W !|op < m||¥; 1|2 so that for

cer(1/2) - 1-—log(2)
7Bo2 " 14TBo?

fr =07 A

condition (56) is fulfilled and the bound is true. O
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6.7. Proof of Proposition 3. We use the following representation (see e.g. Rogers (1985)).
For (i) Set B(y) = [ b(u)du. Then,

—7)?
pi(o9) = o exp (B) ~ Bla) - L 50

g="0b%+0b et (BY ue[0,1]) is a standard Brownian bridge. As |[b'| < M and |b] < M, then,
1 t (y—x)? 1 t B (y—x)Q]

x, < exp|Mly — x|+ M- — < exp [M~ + 2M>t
it follows that

B(exp (5 [ ol = u)a+ uy + ViBL)dw),

2T1/2

V2r
which implies (1).
For (ii), we consider the model dX(t) =b(X(t))dt+o(X(t))dWy, where b, o are functions from
R to R. Setting F(. fo (aydu, the process Y; = F(X(t)) satisfies

dY; = a(Yy)dt + dWy,

fr(y) < exp [Mg + 2M>T]

with a(y) = [,;((%11((% — 10/(F~1(y)). The transition density p;(z,2’) of X is linked to the

transition density ¢:(y,vy") of Y by: pi(z,2’) = ¢(F(z), F(2'))1/o(2"). As ¢/,¢” are bounded
and obtain that || fr| . < 4+o00. O

7. A THEORETICAL TOOL

Theorem 3. (Matriz Chernoff, Tropp (2012)) Consider a finite sequence {Xy} of independent,
random, self-adjoint matrices with dimension d. Assume that each random matriz satisfies

Xe =0 and Anax(Xk) < R almost surely.
Define pimin = Amin(Q_, E(Xk))  and  pimax = Amax (D E(Xi)). Then

6—5 Hmin/R
P {)\min (Z Xk) <(1- 5)Mmin} <d [(1_5)15] for 6 €10,1] and
k
) MmaX/R
{ max (Z Xk) (1+ (5),umax} <d [(14_65)1%} ford > 0.
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