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NONPARAMETRIC DRIFT ESTIMATION FOR I.I.D. PATHS OF

STOCHASTIC DIFFERENTIAL EQUATIONS

F. COMTE(1), V. GENON-CATALOT(1)

Abstract. We consider N independent stochastic processes (Xi(t), t ∈ [0, T ]), i = 1, . . . , N ,
de�ned by a one-dimensional stochastic di�erential equation which are continuously observed
throughout a time interval [0, T ] where T is �xed. We study nonparametric estimation of the
drift function on a given subset A of R. Projection estimators are de�ned on �nite dimensional
subsets of L2(A, dx). We stress that the set Amay be compact or not and the di�usion coe�cient
may be bounded or not. A data-driven procedure to select the dimension of the projection space
is proposed where the dimension is chosen within a random collection of models. Upper bounds
of risks are obtained. March 28, 2019

Keywords and phrases: Di�usion process, Hermite basis, Laguerre basis, model selection, non-
parametric drift estimation, projection estimators.

AMS Classi�cation. 62G07�62M05.

1. Introduction

Consider N independent stochastic processes (Xi(t), t ∈ [0, T ]), i = 1, . . . , N with dynamics
ruled by the following one-dimensional stochastic di�erential equation:

(1) dXi(t) = b(Xi(t))dt+ σ(Xi(t))dWi(t), Xi(0) = x0, i = 1, . . . , N,

where x0 ∈ R is known, (W1, . . . ,WN ) are independent standard Brownian motions. The drift
function b : R → R is unknown and our aim is to study nonparametric estimation of b from
the continuous observation of the N sample paths throughout a �xed time interval [0, T ]. This
problem is typically part of functional data analysis which is devoted to analysis of samples of
in�nite dimensional data (see e.g. Ramsay and Silverman, 2007, Wang et al., 2016). In econo-
metrics, authors also refer to panel or longitudinal data analysis where data from a sample of
individuals are collected over time (see e.g. Hsiao, 2003). In most cases, functional data are
modeled with parametric approaches, often using mixed e�ects non-linear models. In particular,
several recent contributions concern i.i.d. parametric models of stochastic di�erential equations
with mixed e�ects (see e.g. Ditlevsen and De Gaetano, 2005, Overgaard et al., 2005, Piccini et
al., 2010, Piccini and Ditlevsen, 2011, Comte et al., 2013, Delattre and Lavielle, 2013, Delattre
et al., 2013, Dion and Genon-Catalot, 2016, Delattre et al., 2018). Note that i.i.d. samples of
stochastic di�erential equations have been used recently for multiclass classi�cation of di�usions
(see Denis et al., 2018). However, the need of �exibility to deal with the information contained
in functional data analysis make it preferable to use a nonparametric approach.

(1): Sorbonne Paris Cité, MAP5, UMR 8145 CNRS, Université Paris Descartes, FRANCE,
email: fabienne.comte@parisdescartes.fr,
valentine.genon-catalot@parisdescartes.fr.
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Drift estimation for one-dimensional di�usion processes has been widely investigated since the
80's. Whether by a parametric or a nonparametric approach, authors have focused on estimation
from one trajectory observed on a time interval [0, T ] with continuous or discrete sampling. An
asymptotic framework is standardly chosen for the study: either T is �xed and the di�usion
coe�cient tends to 0, or T tends to in�nity and ergodicity assumptions on the model are gen-
erally required. Moreover, when nonparametric estimation is performed by projection methods,
the drift function is generally estimated on a �xed compact subset of R. Nevertheless, when
practical implementation is done, the compact set is chosen equal to the random data range
which contradicts the theoretical results (see, for reference books, e.g. Kutoyants, 1984, 2004,
Iacus, 2008, Kessler et al., 2012).
In our context, ergodicity is not required for Model (1), T is �xed and the asymptotic framework
is N tends to in�nity. The di�usion coe�cient σ is supposed to be known as it is identi�ed from
a continuous observation of the sample paths. We �x a subset A of R and consider the estimation
of bA := b1A by a projection method on �nite dimensional subspaces of L2(A, dx). The set A
may be compact or not and the drift function bA need not be square-integrable. When A = R+

or R, we consider subspaces of L2(A, dx) generated respectively by Laguerre functions or Her-
mite functions. These subspaces have been recently used for nonparametric density or regression
function estimation (see e.g. Comte and Genon-Catalot (2018a-b, 2019)). We propose nonpara-
metric projection estimators of bA and evaluate risk bounds for their L2-risk. This risk is de�ned
either as the expectation of an empirical norm or as the expectation of a L2(A, fT (x)dx)-norm

where the density fT (x) is equal to T−1
∫ T

0 dt pt(x0, x) and pt(x, y) is the transition density of the
di�usion model. A data-driven procedure is proposed to select the dimension of the projection
space. Due to the non compacity of the set A, speci�c bounds for the risks are obtained.
In Section 2, the projection estimators are de�ned and their risks are studied on a �xed projec-
tion space, assumptions and rates of convergence are discussed. Section 3 concerns the adaptive
procedure. A speci�c di�culty arising from the non compacity of A is that the data-driven se-
lection of the projection space dimension must be chosen within a random set. The case where σ
is bounded on A is easier. The penalty term has the usual form and depends on σ only through
a single upper bound, ‖σ1A‖∞. For unbounded σ, the study is complicated by the fact that
the penalty has an unusual form and is random. A short recap on Laguerre and Hermite bases
is given in Section 4 and numerical simulations illustrate the estimations method. Section 5
gives some concluding remarks. Section 6 contains proofs. Some parts of proofs and technical
lemmas are borrowed from Comte and Genon-Catalot (2018b, 2019). A Cherno�-type inequality
for random matrices (see Tropp (2012)) used in proofs is recalled in Section 7.

2. Projection estimators of the drift on a fixed space.

2.1. Assumptions. We consider the usual assumptions ensuring that equation (1) admits a
unique strong solution adapted to the �ltration (Ft = σ(Wi(s), s ≤ t, i = 1, . . . , N), t ≥ 0):

• Either (H1): The functions x 7→ b(x) is C1 and x 7→ σ(x) is C2 on R, and both have
linear growth.
• Or (H2): The function x 7→ b(x) is Lipschitz and the function x 7→ σ(x) is Hölder with
exponent α ∈ [1/2, 1]. This implies that both b and σ have linear growth.

Thus

(2) ∃K > 0, ∀x ∈ R, b2(x) + σ2(x) ≤ K(1 + x2).

Assumption (H1) is standard and Assumption (H2) is ful�lled e.g. by σ(x) =
√
x+ (Cox-

Ingersoll-Ross process). Under (H1) or (H2), the Markov process (Xi(t)) admits a transition
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density pt(x, y) jointly continuous in (t, x, y) on R+× (`, r)× (`, r) where (`, r) is the state space
of (1) (see e.g. Rogers and Williams, 1990, chap. V, Section 7). Morevover, as the initial
condition x0 is deterministic,

(3) ∀k ≥ 0, ∀t ≥ 0 sup
0≤u≤t

E(X1(u))2k = sup
0≤u≤t

∫
y2kpu(x0, y)dy < +∞.

The following density which is well de�ned plays an important role in the sequel:

(4) fT (y) =
1

T

∫ T

0
pu(x0, y)du.

By (3), fT has moments of any order. From assumptions (H1) or (H2) and (3), we have, for all
k:

(5)
1

T
E
[∫ T

0

(
b2k(X1(u)) + σ2k(X1(u))

)
du

]
=

∫
(b2k(y) + σ2k(y))fT (y)dy < +∞.

2.2. De�nition of projection estimators. The following notations are used below. For h a
function, we denote ‖h‖ the L2-norm of L2(A, dx), ‖h‖fT the L2-norm of L2(A, fT (x)dx) and
set hA = h1A and ‖h‖∞ = supx∈A |h(x)| for the sup-norm on A. The Euclidean norm in Rm is
denoted by ‖.‖2,m.
To de�ne nonparametric estimators of the drift function b, we proceed by a projection method.
Consider a set A ⊂ R and a family (Sm,m ≥ 0) of �nite-dimensional subspaces of L2(A, dx),
where each Sm is endowed with an orthonormal basis (ϕj , j = 0, . . . ,m − 1) of A-supported
functions and we estimate bA := b1A. The basis of Sm may depend on m but for simplicity, we
omit this dependence in the notations. We assume that the basis functions ϕj are bounded so
that Sm ⊂ L2(A, fT (x)dx).
Then, for t : R→ R a function, we introduce the contrast:

(6) γN (t) =
1

NT

N∑
i=1

(∫ T

0
t2(Xi(u))du− 2

∫ T

0
t(Xi(u))dXi(u)

)

and note that, for any bounded t, as E
∫ T

0 t2(X1(u))σ2(X1(u))du < +∞,

EγN (t) =
1

T
E
∫ T

0
[t(X1(u))− b(X1(u))]2 du− 1

T
E
∫ T

0
b2(X1(u))du

=

∫
(t(y)− b(y))2fT (y)dy −

∫
b2(y)fT (y)dy.

This property justi�es the de�nition of a collection of estimators b̂m,m ≥ 0 of bA := b1A by
setting:

(7) b̂m = arg min
t∈Sm

γN (t)

Thus, for each m,

(8) b̂m =

m−1∑
j=0

θ̂jϕj
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where the vector of coe�cients θ̂(m) = (θ̂0, . . . , θ̂m−1)′ can be easily computed. Indeed, de�ne
the m× 1-vector

(9) Ẑm =

(
1

NT

N∑
i=1

∫ T

0
ϕj(Xi(u))dXi(u)

)
j=0,...,m−1

and the m×m-matrix

(10) Ψ̂m =

(
1

NT

N∑
i=1

∫ T

0
ϕj(Xi(u))ϕ`(Xi(u))du

)
j,`=0,...,m−1

.

Then, provided that Ψ̂m is a.s. invertible,

(11) θ̂(m) = Ψ̂−1
m Ẑm.

We introduce the empirical norm and the empirical scalar product associated with our observa-
tions. For t(.), s(.) two bounded functions, we set

(12) ‖t‖2N =
1

NT

N∑
i=1

∫ T

0
t2(Xi(u))du, 〈s, t〉N =

1

NT

N∑
i=1

∫ T

0
t(Xi(u))s(Xi(u))du,

(13) νN (t) =
1

NT

N∑
i=1

∫ T

0
t(Xi(u))σ(Xi(u))dWi(u).

Therefore, E‖t‖2N = ‖t‖2fT , E〈s, t〉N = 〈s, t〉fT and EνN (t) = 0, Eν2
N (t) = ‖tσ‖2fT /NT . Using

these notations, we obtain:

Ẑm = (〈ϕj , b〉N , j = 0, . . . ,m− 1)′ + Em Ψ̂m = (〈ϕj , ϕ`〉N , j, ` = 0, . . . ,m− 1)

where

(14) Em = (νN (ϕj), j = 0, . . . ,m− 1)′

is a centered vector. Using (8)-(11), one easily checks that γN (b̂m) = −‖b̂m‖2N .

2.3. Risk bound. For M a matrix, we denote by Tr(M) the trace of M and by ‖M‖op the
operator norm de�ned as the square root of the largest eigenvalue of MM ′. If M is symmetric,
it coincides with sup{|λi|} where λi are the eigenvalues ofM . Moreover, ifM,N are two matrices
with compatible product MN , then, ‖MN‖op ≤ ‖M‖op‖N‖op. For M a symmetric nonnegative

matrix, we denote M1/2 a symmetric square root of M .
Let us set the following assumption:

(15) L(m) := sup
x∈A

m−1∑
j=0

ϕ2
j (x) < +∞.

It is easy to see that the quantity L(m) depends on the space Sm but not on the choice of the
L2(A, dx)-orthonormal basis of Sm used to compute it. Indeed, L(m) = supt∈Sm‖t‖=1 supx∈A t

2(x).

If the spaces Sm are nested, i.e. m ≤ m′ ⇒ Sm ⊂ Sm′ , then the map m 7→ L(m) is increasing.
Throughout the paper, the length-time interval T is �xed and the asymptotic framework is N
tends to in�nity. Without loss of generality, we assume that T is an integer with T ≥ 1. Though
�xed, the value of T may have an impact on the performances of the estimators. This is why all
bounds will be expressed as negative powers of NT .
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To ensure the existence and stability of the estimator, we insert a cuto� and de�ne, for m ≥ 1,

(16) b̃m = b̂m1{L(m)(‖Ψ̂−1
m ‖op∨1)≤cTNT/ log(NT )}, cT =

1− log(2)

8T
.

Let us de�ne the following m×m matrices:

(17) Ψm = EΨ̂m = (〈ϕj , ϕ`〉fT , j, ` = 0, . . . ,m− 1) ,

(18) Ψm,σ2 = E (EmE
′
m) = (〈σϕj , σϕ`〉fT , j, ` = 0, . . . ,m− 1)

(see (14)). Under mild assumptions on the basis (ϕj), the matrix Ψm is invertible as for instance
the ones given in the following lemma.

Lemma 1. Assume that λ(A ∩ supp(fT )) > 0 where λ is the Lebesgue measure and supp(fT )
the support of fT , that the (ϕj)0≤j≤m−1 are continuous, and that there exist x0, . . . , xm−1 ∈
A ∩ supp(fT ) such that det[(ϕj(xk))0≤j,k≤m−1] 6= 0. Then, Ψm is invertible.

The proof is elementary using that, for u = (u0, . . . , um−1)′,

u′Ψmu =

∫ m−1∑
j=0

ujϕj(y)

2

fT (y)dy.

In particular, if (ϕj)0≤j≤m−1 is the Laguerre or the Hermite basis (see Section 4), Ψm is invertible.
By convention, when M is a symmetric non negative and non invertible matrix , we set

‖M−1‖op = +∞, a convention which is coherent as when M is invertible, ‖M−1‖op = 1/ inf{λj}
where {λj} are the eigenvalues of M .

Proposition 1. Consider the estimator b̃m of bA. Then for m such that

(19) L(m)(‖Ψ−1
m ‖op ∨ 1) ≤ cT

2

NT

log(NT )
and m ≤ NT

with cT given in (16), we have

E
[
‖b̃m − bA‖2N

]
≤ inf

t∈Sm
‖t− bA‖2fT +

2

NT
Tr[Ψ−1

m Ψm,σ2 ] +
c1(T )

NT
,(20)

and

E
[
‖b̃m − bA‖2fT

]
≤

(
1 +

1− log(2)

2 log(NT )

)
inf
t∈Sm

‖t− bA‖2fT + 8
Tr[Ψ−1

m Ψm,σ2 ]

NT
+
c2(T )

NT
,(21)

where c1(T ), c2(T ) depend on T through
∫
σ4
A(y)fT (y)dy and

∫
b4A(y)fT (y)dy.

Actually, we can prove that m ≤ L(m)‖Ψ−1
m ‖op and m . NT is automatically satis�ed (see

Lemma 4 in Comte and Genon-Catalot (2018b)).
In the framework of standard regression with independent data, Yi = b(Xi) + εi, i = 1, . . . , n,
Cohen et al. (2013) introduced condition (15) on the space Sm and (19) on the possible di-
mensions (see also Comte and Genon-Catalot (2018b, 2019)). The restrictions on the choices of
m imposed by (19) have the e�ect of stabilizing projection estimators. If m is too large, then,
estimators become very unstable and the precise cuto� for stability is proportional to n/ log n in
the regression model, or NT/ log(NT ) in our case.
Note that ‖Ψ−1

m ‖op = supt∈Sm,‖t‖fT =1 ‖t‖2 (see Proposition 2 in Comte and Genon-Catalot,

2018b) so that, for nested spaces, m 7→ ‖Ψ−1
m ‖op is increasing.

From the variance bound in (20), we cannot deduce a precise rate as a function ofm. Nevertheless,
this bound veri�es:
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Proposition 2.
(i) Let Sm be nested spaces, then m 7→ Tr[Ψ−1

m Ψm,σ2 ] is increasing with m.

(ii) If σ is bounded on A, Tr[Ψ−1
m Ψm,σ2 ] ≤ m‖σA‖2∞.

Classically, in projection methods, the set A is chosen to be compact. If A is compact, σA is
automatically bounded, Proposition 2 applies, and we obtain a variance bound of orderm/(NT ).

In addition, if A is compact, it can be assumed that fT is lower bounded on A, say by f0.
Then we have ‖Ψ−1

m ‖op ≤ 1/f0. Indeed for ~u = (u0, . . . , um−1)′ a vector of Rm, ~u ′Ψm ~u is equal
to ∫

A

m−1∑
j=0

ujϕj(x)

2

fT (x)dx ≥ f0

∫
A

m−1∑
j=0

ujϕj(x)

2

dx = f0‖~u‖22,m.

Therefore, the stability condition (19) simpli�es into m ≤ cNT/ log(NT ) where c depends on T
and f0.

If A is not compact, ‖Ψ−1
m ‖op may be unbounded as a function of m and may increase the

variance rate. For instance, in the case where (ϕj) is the Laguerre basis on A = R+ or the
Hermite basis on A = R, it is proved in the above quoted paper, Proposition 8, that for any
underlying density fT , ‖Ψ−1

m ‖op ≥ c
√
m for some constant c (see Section 4 for the de�nitions of

the Laguerre and Hermite bases).

2.4. Rates of convergence. Some conclusions can be drawn from Propositions 1 and 2 concern-
ing the rates of convergence of the projection estimators. In Comte and Genon-Catalot (2018b),
to assess the bias rate, the following regularity set is proposed and justi�ed:

W s
fT

(A,R) =
{
h ∈ L2(A, fT (x)dx), ∀` ≥ 1, ‖h− hfT` ‖

2
fT
≤ R`−s

}
,

where hfT` is the L2(A, fT (x)dx)-orthogonal projection of h on S`. If bA belongs to W s
fT

(A,R),

then the square bias satis�es ‖bfTm − bA‖2fT ≤ Rm
−s.

Then, the best compromise between bias and variance terms is obtained de�ning m? by the
implicit relation (m?)−s = Tr[Ψ−1

m?Ψm?,σ2 ]/NT and yields a rate of order (m?)−s.

If σ is bounded on A (see Proposition 2), and if m? = (NT )1/(s+1) satis�es (19), we �nd the rate

E[‖b̃m? − bA‖2fT ] . (NT )−s/(s+1).

Let us stress that our context is hitherto unstudied and although this new rate looks familiar,
the optimal rate for this problem is not known.

The next section is devoted to data-driven choices of the dimension of the projection space
and yields an adaptive estimator, i.e. achieving automatically the best compromise between
square bias and variance terms. This is especially interesting in our case where the exact rate is
implicit.

3. Data-driven procedure

Let us consider now the following assumption.

(A1) The collection of spaces Sm is nested (that is Sm ⊂ Sm′ for m ≤ m′) and such that, for
each m, the basis (ϕ0, . . . , ϕm−1) of Sm satis�es

(22) L(m) = ‖
m−1∑
j=0

ϕ2
j‖∞ ≤ c2

ϕm, for cϕ > 0 a constant.

(A2) ‖fT ‖∞ < +∞.
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Clearly, Assumption (A1) is ful�lled by classical compactly supported bases, such as histograms
and trigonometric polynomials, and also by Laguerre and Hermite bases, which are non compactly
supported, see Section 4. Note that L(m) does not depend on the basis, but the bound c2

ϕm
does depend on it. In Section 3.3, we give su�cient conditions ensuring that (A2) holds. We
consider the following collection of models, for θ a positive constant speci�ed below:

(23) M̂N (θ) =

{
m ∈ {1, 2, . . . , NT}, c2

ϕm(‖Ψ̂−1
m ‖2op ∨ 1) ≤ θ NT

log(NT )

}
,

and its theoretical counterpart

(24) MN (θ) =

{
m ∈ {1, . . . , NT}, c2

ϕm (‖Ψ−1
m ‖2op ∨ 1) ≤ θ

4

NT

log(NT )

}
.

Note that, analogously as for ‖Ψ−1
m ‖op, m 7→ ‖Ψ̂−1

m ‖op is increasing.
Under (A1), the condition in the de�nition of MN (θ) is to be compared with the stability
condition (19) which writes c2

ϕm(‖Ψ−1
m ‖op ∨ 1) ≤ (cT /2)(NT/ log(NT )). The condition imposed

inMN (θ) is thus stronger as, clearly, (‖Ψ−1
m ‖op ∨ 1) ≤ (‖Ψ−1

m ‖2op ∨ 1). The same remark holds

between M̂N (θ) and the cuto� used to de�ne b̃m (see (16)).
The aim here is to de�ne a data-driven procedure for selecting the dimension m of the pro-

jection space in such a way that the resulting estimator is adaptive, i.e. that its L2-risk realizes
automatically the best compromise between the bias and the variance term. For this, we distin-
guish the case where σA is bounded or not as the method is di�erent. In both cases, we need the
Bernstein Inequality for continuous local martingales, see Revuz and Yor (1999, p.153), that we
state in our context.

Lemma 2. Let MT := NTνN (t) (see (13)) and 〈M〉T =
∫ T

0

∑N
i=1 t

2(Xi(u))σ2(Xi(u))du. Then,

P(MT ≥ NTε, 〈M〉T ≤ NTv2) ≤ exp

(
−NTε

2

2v2

)
.

3.1. Case of bounded σA. If σ is bounded on A, proofs are simpler. We have that 〈M〉T ≤
NT‖σA‖2∞‖t‖2N and from Proposition 2, the variance term of the risk bound is upper bounded
by ‖σA‖2∞m/NT .
Let us de�ne, under (A2),

(25) dT =

(
3 ∧ 1

‖fT ‖∞

)
1

c0 T
,

where c0 is a numerical constant computed in the proof of Theorem 1. Now we set

(26) m̂ = arg min
m∈M̂N (dT )

{
−‖b̂m‖2N + pen1(m)

}
, with pen1(m) = κ‖σ2

A‖∞
m

NT
,

where κ is a numerical constant. Note that ‖σ2
A‖∞m/NT is an upper bound on the variance

term obtained in Proposition 1 (see Proposition 2).

Theorem 1. Let (Xi(t), t ∈ [0, T ])1≤i≤N be observations ruled by model (1). Assume that (A1),
(A2) hold and that ‖σ2

A‖∞ < ∞. Then, there exists a numerical constant κ0 such that for
κ ≥ κ0, we have

E
[
‖b̂m̂ − bA‖2N

]
≤ C inf

m∈MN (dT )

(
inf
t∈Sm

‖bA − t‖2fT + pen1(m)

)
+

C ′

NT
,

and

E
[
‖b̂m̂ − bA‖2fT

]
≤ C1 inf

m∈MN (dT )

(
inf
t∈Sm

‖bA − t‖2fT + pen1(m)

)
+

C ′1
NT
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where C,C1 are a numerical constants and C ′, C ′1 are constants depending on T through ‖fT ‖∞,∫
b4A(y)fT (y)dy,

∫
σ4
A(y)fT (y)dy.

Theorem 1 says that b̂m̂ automatically realizes the compromise between the squared-bias term
and the variance term, on the collectionMN (dT ).

The penalty contains ‖σA‖∞. As we assume a continuous observation of each sample path,
it is well known that the function σ is identi�ed from such an observation. Therefore, σ can
be assumed to be known. Note that the estimation procedure for b̂m and m̂ only depends on σ
through ‖σA‖∞. In practice, to implement the adaptive procedure, we can use a simple estimator
of ‖σA‖∞ built from discretisations of the observed trajectories with very small sample step.

In the de�nition of the setsMN (dT ) and M̂N (dT ), there appears ‖fT ‖∞, which is unknown. In
theory and in practical implementation, we can simply replace dT (NT )/ log(NT ) byNT/ log1+ε(NT ),
ε > 0, provided that N is large enough.

The constant κ is a speci�c feature of the model selection method. Theorem 1 states that,
under the assumptions of the theorem, for any function b, there exists a numerical (universal)
constant κ0 such that the inequalities hold for all κ ≥ κ0. The proof provides a numerical value
κ0 which is too large. Finding the best value κ0 for a given statistical problem is not easy.
For instance, this topic is the subject of Birgé and Massart (2007) paper in the Gaussian white
noise model where the authors prove that κ > 1 is required in this case. Thus, for practical
implementation of the adaptive estimator, it is standard and commonly done that one starts by
preliminary simulations to obtain a value of κ closer to the true one. Afterwards, this value is
�xed once and for all.

3.2. Case of unbounded σA. Here, the estimation procedure depends on the complete knowl-
edge of σ and of the constant K such that σ2(x) ≤ K(1 + x2) (see (2)).
To study the case of unbounded σA, it is natural to consider that A is non compact. In the
following, we consider the Laguerre and Hermite bases (see Section 4), and introduce the speci�c
assumptions:

(A3) There exists c > 0 such that for all m ≥ 1, ‖Ψ−1
m ‖2op ≥ cmβ with β = 4 for Laguerre

basis and β = 5/3 for Hermite basis.

(A4) The function σ2 is lower bounded on A: σ2(x) ≥ σ2
0 > 0.

For the Hermite and Laguerre bases, ‖Ψ−1
m ‖2op ≥ cm, see Comte and Genon-Catalot (2018b),

Proposition 8. Consequently, (A3) is a stronger constraint: our conjecture, based on numerical
simulations, is that it is related to the rate of decay of fT near in�nity. Under (A4), the state
space of the processes Xi(t) is R; nevertheless, it is possible to estimate b on R+ using the
Laguerre basis. Moreover, if σ is not lower bounded, the result below still holds replacing (A4)
by the technical condition (56).

Let

(27) fT = dT ∧
1− log(2)

14TBσ2
0

with dT is de�ned in (26), B = 21K for Laguerre basis, B = 2KC2
∞ for Hermite basis (see the

de�nition of C∞ in Section 4), K is de�ned in (2) and set

(28) m̂ = arg min
m∈M̂N (fT )

{
−‖b̂m‖2N + p̂en2(m)

}
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where

(29) p̂en2(m) = κ1
m(1 + `m)(1 + ‖Ψ̂−1/2

m Ψ̂m,σ2Ψ̂
−1/2
m )‖op

NT
,

with κ1 a numerical constant, (`m) is a sequence of nonnegative numbers. The matrix Ψ̂m,σ2 is
the empirical counterpart of Ψm,σ2 (see (18)):

Ψ̂m,σ2 = (〈σϕj , σϕ`〉N , j, ` = 0, . . . ,m− 1) .

Theorem 2. Let (Xi(t), t ∈ [0, T ])1≤i≤N be observations ruled by model (1). Assume that (A1)-
(A4) hold. Let the sequence (`m) be such that 1 ≤ `m ≤ NT , for m ∈MN (fT ) and

(30)
∑

m∈MN (16fT )

m‖Ψ−1
m ‖op e

−m`m ≤ Σ.

Let

(31) pen2(m) = κ1
m(1 + `m)(1 + ‖Ψ−1/2

m Ψm,σ2Ψ
−1/2
m ‖op)

NT
.

Then, there exists a numerical constant κ̃0 such that for κ1 ≥ κ̃0, we have

E
[
‖b̂m̂ − bA‖2N

]
≤ C inf

m∈MN (fT )

(
inf
t∈Sm

‖bA − t‖2fT + pen2(m)

)
+

C ′

NT

and

E
[
‖b̂m̂ − bA‖2fT

]
≤ C1 inf

m∈MN (fT )

(
inf
t∈Sm

‖bA − t‖2fT + pen2(m)

)
+

C ′1
NT

,

where C,C1 are a numerical constants and C ′, C ′1 are constants depending on Σ and depending

on T through
∫
b4A(y)fT (y)dy,

∫
σ

4+56/β
A (y)fT (y)dy, ‖fT ‖∞.

As previously, the penalty is obtained using an upper boundm(1+`m)(1+‖Ψ−1/2
m Ψm,σ2Ψ

−1/2
m ‖op)/NT

of the variance term given in Proposition 1. Theorem 2 thus states that the compromise between
the squared-bias term and the variance term, is automatically realized by b̂m̂, on the collection
MN (fT ).

Under (A4), Tr(Ψ
−1/2
m Ψm,σ2Ψ

−1/2
m ) ≥ σ2

0m and ‖Ψ−1/2
m Ψm,σ2Ψ

−1/2
m ‖op ≥ σ2

0, thus pen2(m) %
pen1(m).
In Comte and Genon-Catalot (2018b), examples of densities for which ‖Ψ−1

m ‖op is upper bounded

by O(mk) are given. In such a case, we can take `m = 1 for all m, and (30) holds.

3.3. About assumption (A2) and some extensions. Recall that, for h continuous and

bounded, s → Eh(X(s)) is continuous and therefore, T−1
∫ T

0 Eh(X(s))ds =
∫
h(y)fT (y)dy is

well de�ned so that the density fT is always well de�ned.
When the transition density is explicit, we can check (A2) directly. For instance, assumption
(A2) holds for the Brownian motion with drift, for the Ornstein-Uhlenbeck process or for the
geometric Brownian motion. More generally, the following result holds.

Proposition 3. (i) If σ(x) = 1, b is C1, |b|+ |b′| ≤M , then ‖fT ‖∞ < +∞.
(ii) If σ is C2, σ′, σ′′ bounded, σ lower bounded by σ0 > 0, b is C1 and b, b′ bounded, then
‖fT ‖∞ < +∞.
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Our study concerns a �xed initial condition x0 for the di�usion model. This is not mandatory.
We may also consider the model

(32) dXi(t) = b(Xi(t))dt+ σ(Xi(t))dWi(t), Xi(0) = ηi, i = 1, . . . , N.

where the initial conditions ηi are i.i.d. random variables independent of (W1, . . . ,WN ), with
common distribution µ on R, such that Eη2k < +∞, for k large enough. In this case, Xi(s) has
distribution

∫
R µ(dx)ps(x, y)dy. It is enough to replace fT = fx0

T by

fµT (y) =
1

T

∫ T

0
ds

∫
R
µ(dx)ps(x, y).

In particular, if model (32) is positive recurrent with invariant distribution π(y)dy and η has
distribution π, then

∫
R π(dx)ps(x, y) = π(y) for all s, implying that fπT = π. The assumption

‖fT ‖∞ < +∞ becomes ‖π‖∞ < ∞. So ‖.‖fT = ‖.‖π is �xed, the constants c1(T ), c2(T ) in
Proposition 1 no more depend on T , and thus the risk bound (especially the variance term) is
improved when T gets large.

4. Simulation study

We propose a brief simulation study to illustrate the estimation method. Implementation is
done with either the Laguerre basis (A = R+) or the Hermite basis (A = R). We recall their
de�nition.
• Laguerre basis, A = R+. The Laguerre polynomials (Lj) and the Laguerre functions (`j) are
given by

(33) Lj(x) =

j∑
k=0

(−1)k
(
j

k

)
xk

k!
, `j(x) =

√
2Lj(2x)e−x1x≥0, j ≥ 0.

The collection (`j)j≥0 is a complete orthonormal system on L2(R+) satisfying: ∀j ≥ 0, ∀x ∈
R+, |`j(x)| ≤

√
2, see Abramowitz and Stegun (1964, 22.14.12) The collection of models (Sm =

span{`0, . . . , `m−1}) is nested and obviously (22) holds with c2
ϕ = 2.

• Hermite basis, A = R. The Hermite polynomial and the Hermite function of order j are given,
for j ≥ 0, by:

(34) Hj(x) = (−1)jex
2 dj

dxj
(e−x

2
), hj(x) = cjHj(x)e−x

2/2, cj =
(
2jj!
√
π
)−1/2

The sequence (hj , j ≥ 0) is an orthonormal basis of L2(R, dx). Moreover (see Abramowitz and

Stegun (1964, 22.14.17), Szegö (1975) p.242), ‖hj‖∞ ≤ Φ0,Φ0 ' 1, 086435/π1/4 ' 0.8160, so
that (22) holds with c2

ϕ = Φ2
0. The collection of models (Sm = span{h0, . . . , hm−1}) is obviously

nested. Moreover, ‖hj‖∞ ≤ C∞(j+1)−1/12, j = 0, 1, . . . where the constant C∞ given is in Szegö

(1975). Thus in this case, L(m) ≤ C2
∞m

5/6.
Laguerre polynomials are computed using formula (j + 1)Lj+1(x) = (2j + 1 − x)Lj(x) −

jLj−1(x), L0(x) = 1, L1(x) = 1 − x and Hermite polynomials with H0(x) = 1, H1(x) = x and
the recursion Hn+1(x) = 2xHn(x)− 2nHn−1(x), see Abramowitz and Stegun (1964, 22.7).

We simulate discrete sampling of four models, one by Euler scheme, and the others by exact
discretization. All our models admit a stationary distribution. When models are randomly
initialized, the initial variable follows the stationary density and (A2) is ful�lled..
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Example 1, Xi(0) = 0 Example 2, random Xi(0)
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Example 3, Xi(0) = 1 Example 4, random Xi(0)
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Figure 1. 20 estimated curves in Hermite or Laguerre basis (grey-green), the
true in bold (black/red), N = 100, T = 10.

Example 1. Hyperbolic di�usion. The model dXt = −θXt dt + γ
√

1 +X2
t dWt, X0 = 0, is

simulated by a Euler scheme with step ∆. We chose θ = 2 and γ =
√

1/2. Model 1 satis�es (H1).

The other examples are obtained from a d-dimensional Ornstein-Uhlenbeck processes (Ui(t))t≥0,
with dynamics given by

(35) dUi(t) = −r
2
Ui(t)dt+

γ

2
dWi,d(t), Ui(0) ∼ Nd(0,

γ2

4r
Id) or Ui(0) = 0.
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Here Wi,d is a d-dimensional standard Brownian motion. Exact simulation is generated with
step ∆ by computing

Ui((k + 1)∆) = e−
r∆
2 Ui(k∆) + εi((k + 1)∆), εi(k∆) ∼iid Nd(0,

γ2(1− e−r∆)

4r
Id).

Example 2. Xi(t) = tanh(Ui(t)) where Ui(t) is de�ned by (35) with d = 1 is solution of (32)
with

b(x) = (1− x2)

(
−r

2
atanh(x)− γ2

4
x

)
, σ(x) =

γ

2
(1− x2), with r = 4 and γ = 2.

Here, Xi(t) has state space [−1, 1], so that b and σ are bounded on this domain and (H1) holds.
Example 3. Xi(t) = exp(Ui(t)) where Ui(t) is de�ned by (35) with d = 1 is solution of (32)
with

b(x) = x

(
−r

2
log(x+) +

γ2

8

)
, σ(x) =

γ

2
x+, with r = 1 and γ = 2.

For example 3, neither (H1) nor (H2) hold for b.
Example 4. Cox-Ingersoll-Ross or square-root process. We take Xi(t) = ‖Ui(t)‖22,d where Ui(t)
is de�ned by (35) with d = 3 is solution of (32) with

dXi(t) = (
dγ2

4
− rXi(t))dt+ γ

√
Xi(t)dW

∗
i (t),

where W ∗i (t) is a standard brownian motion. We take k = 2 and γ = 1. Model 4 satis�es (H2).

In all cases, samples (Xi(k∆))1≤i≤N,1≤k≤n, n∆ = T from the above models are generated,
with N = 100 and T = 10 obtained with n = 1000 and ∆ = 0.01. For examples 1 and 2, the
Hermite basis is used; in example 3, both Hermite and Laguerre are experienced, and in example
4, we use Laguerre basis. Indeed, examples 3,4 provide nonnegative processes and are well suited
to Laguerre basis use.

The set M̂N (fT ) is generally too small in practice to contain enough values of m to be visited.

Therefore a larger set given by M̂?
N = {m ≤ 10, m‖Ψ̂−1

m ‖
1/4
op ≤ NT} is chosen.

The penalty is taken equal to p̂en(m) = κ‖Ψ̂−1
m Ψ̂m,σ2‖op/(N n∆) and m̂ is selected as the

minimizer of −‖b̂m‖2N + p̂en(m). After preliminary simulations, the constant κ is taken equal to
κ = 1, see the comment after Theorem 1.

Figure 1 shows 20 estimated drift functions b̂m̂ (green/grey), and the true (red/black). We
stress that the value of m̂ is rather small: under each graph, we give the mean ¯̂m computed over
the 20 estimators, with standard deviation in parenthesis. Thus, we see that the function is very
well reconstructed using a small number of coe�cients.

5. Concluding remarks

In this paper, we study nonparametric estimation of the unknown drift of a one-dimensional
di�usion process from the observation of N i.i.d. sample paths which are continuously observed
throughout a time interval [0, T ]. The drift is estimated on a subset A of R by a projection
method where the set A may be compact or not, in the two cases of bounded or unbounded σ.
In each case, an adaptive estimator is proposed.

The estimation procedures use some constants, which can be easily estimated, in particu-
lar ‖fT ‖∞ de�ned by (4). Assuming that fT ∈ L2(A, dx), the estimation of fT can be done

standardly by projection method. Let aj = 〈fT , ϕj〉. Then âj = n−1
∑N

i=1 T
−1
∫ T

0 ϕj(Xi(s))ds
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is an unbiased estimator of aj and we can de�ne the projection estimator of fT on Sm by

f̂T,m =
∑m−1

j=0 âjϕj . This estimator sati�es

E‖f̂T,m − fT ‖2 ≤ ‖f − fm‖2 + c2
ϕ

m

N
, fm =

m−1∑
j=0

ajϕj

where ‖.‖ is the usual L2-norm.
As we assume continuous observation of the sample paths, we can consider that σ is known.

Nevertheless, it can be estimated by using discrete sampling with very small sampling interval.
For practical implementation, a discretisation with small step is required to compute the

quantities Ψ̂m, Ẑm, Ψ̂m,σ2 . The theoretical study of drift estimation for discretely observed paths
would be of interest but probably tedious; it is left for further investigation.

6. Proofs

We denote by x . y if there exists a constant c such that x ≤ cy.

6.1. Proof of Proposition 1. We start by de�ning the sets

(36) Λm :=

{
L(m)(‖Ψ̂−1

m ‖op ∨ 1) ≤ cT
NT

log(NT )

}
and Ωm :=

{∣∣∣∣∣ ‖t‖2N‖t‖2fT
− 1

∣∣∣∣∣ ≤ 1

2
, ∀t ∈ Sm

}
.

On Ωm, the empirical norm ‖.‖N and the L2(A, fT (x)dx)- norm are equivalent for elements of

Sm: (2/3)‖t‖2N ≤ ‖t‖2fT ≤ 2‖t‖2N . Moreover, if ~x′ = (x0, . . . , xm−1) ∈ Rm and t =
∑m−1

j=0 xjϕj ,
then

‖t‖2N = ~x′Ψ̂m~x and ‖t‖2fT = ~x′Ψm~x = ‖Ψ1/2
m ~x‖22,m, so that

sup
t∈Sm,‖t‖fT =1

∣∣‖t‖2N − ‖t‖2fT ∣∣ = sup
~x∈Rm,‖Ψ1/2

m ~x‖2,m=1

∣∣∣~x′(Ψ̂m −Ψm)~x
∣∣∣

= sup
~u∈Rm,‖~u‖2,m=1

∣∣∣~u′Ψ−1/2
m (Ψ̂m −Ψm)Ψ−1/2

m ~u
∣∣∣

= ‖Ψ−1/2
m Ψ̂mΨ−1/2

m − Idm‖op.

Therefore,

Ωm =
{
‖Ψ−1/2

m Ψ̂mΨ−1/2
m − Idm‖op ≤ 1/2

}
.

The following lemma is analogous to Lemma 5 in Comte and Genon-Catalot (2018b) and deter-
mines the value of cT given in (16). Its proof is omitted.

Lemma 3. Under the assumptions of Proposition 1, for m satisfying (19) with cT given by (16),
we have, for c is a positive constant,

P(Λcm) ≤ c/(NT )7, P(Ωc
m) ≤ c/(NT )7.

Now, we prove (20). For this, we write

‖b̃m − bA‖2N = ‖b̂m − bA‖2N1Λm + ‖bA‖2N1Λcm

= ‖b̂m − bA‖2N1Λm∩Ωm + ‖b̂m − bA‖2N1Λm∩Ωcm + ‖bA‖2N1Λcm := T1 + T2 + T3.(37)

We bound the expectation of the three terms above.
The last term T3 is the easiest:

(38) ET3 ≤ E1/2(‖bA‖4N )P1/2(Λcm) .
1

(NT )7/2
.

1

NT
.
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as

(39) E(‖bA‖4N ) ≤ 1

T 2
E
(∫ T

0
b2A(X1(u))du

)2

≤
∫
b4A(y)fT (y)dy < +∞.

To study T1, T2, let us introduce the operator Πm : L2(A, fT (x)dx)→ Sm of orthogonal projec-
tion with respect to the empirical scalar product 〈., .〉N , i.e. Πmh is the function of Sm given
by

‖h−Πmh‖2N = inf
t∈Sm

‖h− t‖2N .

Simple computations show that Πmh =
∑m−1

j=0 τjϕj where ~τ = (τ0, . . . , τm−1)′ = Ψ̂−1
m (〈ϕj , h〉N )0≤j≤m−1.

Thus, we can write:

(40) ‖b̂m − bA‖2N = ‖b̂m −ΠmbA‖2N + ‖ΠmbA − bA‖2N = ‖b̂m −ΠmbA‖2N + inf
t∈Sm

‖bA − t‖2N .

We have ΠmbA =
∑m−1

j=0 âjϕj where â(m) = (â0, . . . , âm−1)′ = Ψ̂−1
m (〈ϕj , bA〉N )0≤j≤m−1. Recall

that b̂m =
∑m−1

j=0 θ̂jϕj with θ̂(m) = Ψ̂−1
m Ẑm (see (9)). Hence, we have θ̂(m) − â(m) = Ψ̂−1

m Em (see

(14)) and

‖b̂m −ΠmbA‖2N =
1

NT

N∑
i=1

∫ T

0

m−1∑
j=0

(θ̂j − âj)ϕj(Xi(u))

2

du

=
1

NT

N∑
i=1

∫ T

0

[
(θ̂(m) − â(m))

′ (ϕj(Xi(u)))0≤j≤m−1

]2
du

= (θ̂(m) − â(m))
′Ψ̂m(θ̂(m) − â(m)) = E′mΨ̂−1

m Em.

Now, we look at T1 = ‖b̂m − bA‖2N1Λm∩Ωm = (‖b̂m −ΠmbA‖2N + inft∈Sm ‖bA − t‖2N )1Λm∩Ωm (see
(37) and (40)).

On Ωm, all the eigenvalues of Ψ−1/2
m Ψ̂mΨ−1/2

m belong to [1/2, 3/2] and so all the eigenvalues of

Ψ
1/2
m Ψ̂−1

m Ψ
1/2
m belong to [2/3, 2]. Thus on Ωm, we have, a.s.

E′mΨ̂−1
m Em = E′mΨ−1/2

m Ψ1/2
m Ψ̂−1

m Ψ1/2
m Ψ−1/2

m Em ≤ 2E′mΨ−1
m Em.

Therefore

E
(
‖b̂m −ΠmbA‖2N1Ωm∩Λm

)
≤ 2E

 ∑
0≤j,k≤m−1

[Em]j [Em]k[Ψ
−1
m ]j,k


=

2

NT 2

∑
0≤j,k≤m−1

[Ψ−1
m ]j,kE

(∫ T

0
ϕj(X1(u))σ(X1(u))dW1(u)

∫ T

0
ϕk(X1(u))σ(X1(u))dW1(u)

)
=

2

NT

∑
0≤j,k≤m−1

[Ψ−1
m ]j,k[Ψm,σ2 ]j,k =

2

NT
Tr(Ψ−1

m Ψm,σ2).(41)

So we obtain:

E(T1) ≤ inf
t∈Sm

‖bA − t‖2fT +
2

NT
Tr(Ψ−1

m Ψm,σ2).

Now, we look at T2 = ‖b̂m − bA‖2N1Λm∩Ωcm ≤ (‖b̂m −ΠmbA‖2N + ‖bA‖2N )1Λm∩Ωcm and �nd:

(42) T2 ≤ (E′mΨ̂−1
m Em + ‖bA‖2N )1Λm∩Ωcm .
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This yields, using the de�nition of Λmto bound Ψ̂−1
m and the Cauchy-Schwarz inequality,

(43) ET2 ≤
(

cTNT

L(m) log(NT )
E1/2((E′mEm)2) + E1/2‖bA‖4N )

)
P1/2(Ωc

m)

where we have already seen that E(‖bA‖4N ) ≤
∫
b4A(y)fT (y)dy. The term E[(E′mEm)2] is ruled

by the following lemma which is proved below:

Lemma 4. With Em de�ned in (14) (see also (13)), we have

E[(E′mEm)2] ≤ cmL
2(m)

(NT )2

∫
σ4
A(y)fT (y)dy

where c is a numerical constant.

Plugging the result of Lemma 4 in (43) allows to conclude for all m satisfying (19), and
m ≤ NT , that E(T2) ≤ c/(NT )3 ≤ c/(NT ).
Joining the bounds for the expectations of T1, T2, T3 gives Inequality (20).

Now, we prove (21). We have

(44) E(‖b̃m − bA‖2fT ) = E(‖b̂m − bA‖2fT 1Ωm∩Λm) + E(‖b̂m − bA‖2fT 1Ωcm∩Λm) + ‖bA‖2fTP(Λcm).

The last r.h.s. term is bounded by applying Lemma 3.
Next, we study the �rst term E(‖b̂m − bA‖2fT 1Ωm∩Λm).

Let bfTm denote the orthogonal projection of b on Sm w.r.t. the L2(A, fT (x)dx)-norm and set

g = bA − bfTm , so that the bias term is equal to

‖g‖fT = inf
t∈Sm

‖t− bA‖fT .

We have

b̂m − bA = b̂m −ΠmbA + ΠmbA − bA = b̂m −ΠmbA + Πmg − g.
where Πmg = ΠmbA − bfTm . As g is orthogonal w.r.t. the L2(A, fT (x)dx)-scalar product to Sm
and thus to b̂m −ΠmbA + ΠmbA, we have

‖b̂m − bA‖2fT = ‖b̂m −ΠmbA + Πmg‖2fT + ‖g‖2fT .

We can write:

E(‖b̂m − bA‖2fT 1Λm∩Ωm) ≤ ‖g‖2fT + 2E(‖b̂m −ΠmbA‖2fT 1Λm∩Ωm) + 2E(‖Πmg‖2fT 1Λm∩Ωm).

The �rst term is the squared bias. The second term satis�es, by de�nition of Ωm and (41),

2E(‖b̂m −ΠmbA‖2fT 1Λm∩Ωm) ≤ 4E(‖b̂m −ΠmbA‖2N1Λm∩Ωm) ≤ 8

NT
Tr(Ψ−1

m Ψm,σ2).

For the third term, we have the following result which is proved later on.

Lemma 5. Under the assumptions of Proposition 1,

E(‖Πmg‖2fT 1Ωm∩Λm) ≤ 2
cT

log(NT )
‖g‖2fT = 2

cT
log(NT )

inf
t∈Sm

‖t− bA‖2fT .

Therefore, we conclude that

(45) E(‖b̂m − bA‖2fT 1Λm∩Ωm) ≤ (1 + 4
cT

log(NT )
) inf
t∈Sm

‖t− bA‖2fT +
8

NT
Tr(Ψ−1

m Ψm,σ2).
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Now, we look at E(‖b̂m − bA‖2fT 1Ωcm∩Λm) (see (44)). We have P(Ωc
m) ≤ c/(NT )7 and ‖b̂m −

bA‖2fT ≤ 2‖b̂m‖2fT + 2‖bA‖2fT . Therefore, only the term E
[
‖b̂m‖2fT 1Ωcm∩Λm

]
is to be studied. We

have:
(46)

‖b̂m‖2fT =

∫
(

m−1∑
j=0

θ̂jϕj(y))2fT (y)dy = θ̂′(m)Ψmθ̂(m) = Ẑ ′mΨ̂−1
m ΨmΨ̂−1

m Ẑm ≤ ‖Ψ̂−1
m ‖2op‖Ψm‖opẐ

′
mẐm.

We have

‖Ψm‖op = sup
‖~x‖2,m=1

~x′Ψm~x = sup
‖~x‖2,m=1

∫ m−1∑
j=0

xjϕj(u)

2

fT (u)du ≤ L(m).

It follows by de�nition of Λm that

(47) E
[
‖b̃m‖2fT 1Λm∩Ωcm

]
≤
(

cTNT

log(NT )

)2 1

L(m)
E1/2[(Ẑ ′mẐm)2]P1/2(Ωc

m).

Now, we have: (Ẑ ′mẐm)2 ≤ 4m
∑m−1

j=0 〈ϕj , b〉4N + 4(E′mEm)2. By elementary computations,

E(〈ϕj , b〉4N ) ≤
∫

(ϕj(x)bA(x))4fT (x)dx. Therefore, by using Lemma 4,(
E(Ẑ ′mẐm)2

)1/2
≤ 2

(√
mL(m)(

∫
b4A(x)fT (x)dx)1/2 +

√
c

√
mL(m)

NT
(

∫
σ4
A(y)fT (y)dy)1/2

)
.

Joining the above with (47) yields

(48) E
[
‖b̂m‖2fT 1Ωcm∩Λm

]
≤ c

NT

(
(

∫
b4A(y)fT (y)dy)1/2 + (

∫
σ4
A(y)fT (y)dy)1/2

)
.

So plugging (48) in (44) together with (45) yields the bound (21). 2

6.2. Proof of Lemma 4. E((E′mEm)2) = 1
N4T 4E(F (M0(T ), . . . ,Mm−1(T ))) where F (x0, . . . , xm−1) =

(
∑m−1

j=0 x2
j )

2 and Mj(T ) =
∫ T

0

(∑N
i=1 ϕj(Xi(u))σ(Xi(u))dWi(u)

)
. By the Cauchy-Schwarz and

Burkholder-Davis-Gundy inequalities, we get:

E((E′mEm)2) ≤ c
m

(NT )4

m−1∑
j=0

E〈Mj〉2T

= c
m

(NT )4

m−1∑
j=0

E

(∫ T

0

N∑
i=1

ϕ2
j (Xi(u))σ2(Xi(u))du

)2


≤ c
m

(NT )4
TN

N∑
i=1

m−1∑
j=0

E
(∫ T

0
ϕ4
j (Xi(u))σ4

A(Xi(u))du

)

≤ c
mL2(m)

(NT )2

∫
σ4
A(y)fT (y)dy. 2

6.3. Proof of Lemma 5. To compute ‖Πmg‖fT , let (ϕ̄j)0≤j≤m−1 be an orthonormal basis of

Sm w.r.t. the L2(A, fT (x)dx)-scalar product. If ϕ̄j =
∑m−1

k=0 αj,kϕk and Am = (αj,k)0≤j,k≤m−1,
then

Idm = (

∫
ϕ̄jϕ̄kfT )j,k = AmΨmA

′
m
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so that Am is a square root of Ψ−1
m . Let Ĝm = (〈ϕ̄j , ϕ̄k〉N )j,k = AmΨ̂mA

′
m. The matrix Ĝm

and Ψ
−1/2
m Ψ̂mΨ

−1/2
m have the same eigenvalues. Therefore, on Ωm, ‖Ĝm − Idm‖op ≤ 1/2, and

thus ‖Ĝ−1
m ‖op ≤ 2 .

Now if Πmg =
∑m−1

k=0 βkϕ̄k, as 〈g − Πmg, ϕ̄j〉N = 0 for j = 0, 1, . . . ,m− 1, we get 〈g, ϕ̄j〉N =

〈Πmg, ϕ̄j〉N =
∑m−1

k=0 βk〈ϕ̄k, ϕ̄j〉N so that

Ĝm
~βm = (〈g, ϕ̄j〉N )0≤j≤m−1 := ~dm,

where ~βm = (β0 . . . βm−1)′. Therefore, on Ωm,

(49) ‖Πmg‖2fT = ‖~βm‖22,m = ‖Ĝ−1
m
~dm‖22,m ≤ ‖Ĝ−1

m ‖2op‖~dm‖22,m ≤ 4

m−1∑
j=0

〈g, ϕ̄j〉2N .

Now, we note that

E(〈g, ϕ̄j〉N ) = E

(
1

NT

N∑
i=1

∫
ϕ̄j(Xi(u))g(Xi(u))du

)
= 〈ϕ̄j , g〉fT = 0

as g ⊥(fT ) ϕ̄j . Thus

E[〈g, ϕ̄j〉2N ] = Var

(
1

NT

N∑
i=1

∫ T

0
ϕ̄j(Xi(u))g(Xi(u))du

)
=

1

NT 2
Var

(∫ T

0
ϕ̄j(X1(u))g(X1(u))du

)
and

E

m−1∑
j=0

〈g, ϕ̄j〉2N1Ωm∩Λm

 ≤ 1

NT 2

m−1∑
j=0

E

[(∫ T

0
ϕ̄j(X1(u))g(X1(u))du

)2
]

=
1

NT 2
E
[
‖Am~v‖22,m

]
where ~v = (

∫ T
0 ϕk(X1(u))g(X1(u))du)0≤k≤m−1. As ‖Am‖2op = ‖Ψ−1

m ‖op, we get

E

m−1∑
j=0

〈g, ϕ̄j〉2N1Ωm∩Λm)

 ≤ ‖Ψ−1
m ‖op

NT 2
E(‖~v‖22,m)

≤ ‖Ψ−1
m ‖op

NT 2
E

m−1∑
j=0

(∫ T

0
ϕj(X1(u))g(X1(u))du

)2


≤ ‖Ψ−1
m ‖op

N
L(m)‖g‖2fT .

This, under (19) and reminding (49), implies

E(‖Πmg‖2fT 1Ωm∩Λm) ≤ 2T cT
log(NT )

‖g‖2fT .

This gives the result of Lemma 5. 2



18 F. COMTE, V. GENON-CATALOT

6.4. Proof of Proposition 2. Property (i) follows from Proposition 2.4 in Comte and Genon-
Catalot (2019)). For (ii), we can write:

Tr
[
Ψ−1/2
m Ψm,σ2Ψ−1/2

m

]
≤ m‖Ψ−1/2

m Ψm,σ2Ψ−1/2
m ‖op

where

‖Ψ−1/2
m Ψm,σ2Ψ−1/2

m ‖op = sup
‖x‖2,m=1

x′Ψ−1/2
m Ψm,σ2Ψ−1/2

m x = sup
y,‖Ψ1/2

m y‖2,m=1

y′Ψm,σ2y.

Now, if σ is bounded on A,

y′Ψm,σ2y =

∫
(
m−1∑
j=0

yjϕj(x))2σ2(x)fT (x)dx

≤ ‖σ2
A‖∞

∫
(

m−1∑
j=0

yjϕj(x))2fT (x)dx = ‖σ2
A‖∞‖Ψ1/2

m y‖22,m.

Thus, Tr
[
Ψ
−1/2
m Ψm,σ2Ψ

−1/2
m

]
≤ m‖σ2

A‖∞. 2

6.5. Proof of Theorem 1 and Theorem 2. To deal with the random set M̂N (θ) (see (23)),
we introduce an additional set

(50) M+
N (θ) =

{
m ∈ N, c2

ϕm (‖Ψ−1
m ‖2op ∨ 1) ≤ 4θ

NT

log(NT )

}
=MN (16θ).

In the following, for simplicity, we shall denoteMN , M̂N ,M+
N forMN (dT ), M̂N (dT ),M+

N (dT )

if σA is bounded (case of Theorem 1), and for MN (fT ), M̂N (fT ), M+
N (fT ) otherwise (case of

Theorem 2).

We denote by M̂N (resp. M+
N ,MN ) the maximal element of M̂N (resp. M+

N ,MN , (see (24)).
Let

(51) ΞN :=
{
MN ⊂ M̂N ⊂M+

N

}
.

Proceeding as in Lemma 7 in Comte and Genon-Catalot (2018b) we can prove that, for the
choice of dT given in (25) with c0 a large enough numerical value (c0 = 96 suits), and, for c a
positive constant,

(52) P(ΞcN ) = P
({
MN * M̂N or M̂N *M+

N

})
≤ c

(NT )4
.

We write the decomposition: b̂m̂− bA = (b̂m̂− bA)1ΞN + (b̂m̂− bA)1ΞcN
. As for the study of T2

de�ned by (37), starting from (42), we get

‖bA − b̂m̂‖2N1ΞcN
≤ (E′m̂Ψ̂−1

m̂ Em̂ + ‖bA‖2N )1ΞcN
.

Now, as m̂ ∈ M̂N ,

(E′m̂Ψ̂−1
m̂ Em̂)2 ≤ ‖Ψ̂−1

m̂ ‖
2
op(E′NTENT )2 ≤ dT

c2
ϕ

NT

log(NT )
(E′NTENT )2.

Lemma 4 yields E[(E′NTENT )2] ≤ cc4
ϕ(NT )

∫
σ4
A(y)fT (y)dy and thus E[(E′m̂Ψ̂−1

m̂ Em̂)2] . (NT )2.

This together with (52) implies, for C a constant depending on
∫
σ4
AfT ,

∫
b4AfT , and dT ,

E[‖bA − b̂m̂‖2n1ΞcN
] ≤ C

NT
.
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It remains to study E
[
‖b̂m̂ − bA‖2N1ΞN

]
. To begin with, recall that γN (b̂m) = −‖b̂m‖2N . Conse-

quently, we can write

m̂ = arg min
m∈M̂N

{γN (b̂m) + p̂en(m)},

where p̂en(m) = pen1(m) de�ned by (26) if σ is bounded on A and p̂en(m) = p̂en2(m) de�ned

by (29) otherwise. Thus, we have, for any m ∈ M̂N , and any bm ∈ Sm,

(53) γN (b̂m̂) + p̂en(m̂) ≤ γN (bm) + p̂en(m).

On ΞN =
{
MN ⊂ M̂N ⊂M+

N

}
, m̂ ≤ M̂N ≤ M+

N and either MN ≤ m̂ ≤ M̂N ≤ M+
N or

m̂ < MN ≤ M̂N ≤ M+
N . In the �rst case, m̂ is upper and lower bounded by deterministic

bounds and (53) a fortiori holds for any m ∈MN ; and in the second cas,

m̂ = arg min
m∈MN

{γN (b̂m) + p̂en(m)}.

Thus, on ΞN , (53) holds for any m ∈MN and any bm ∈ Sm. The decomposition γn(t)−γn(s) =
‖t− b‖2N − ‖s− b‖2N + 2νN (t− s), where νN (t) is de�ned by (13), yields, for any m ∈ MN and
any bm ∈ Sm,

‖b̂m̂ − bA‖2N ≤ ‖bm −A ‖2N + 2νN (b̂m̂ − bm) + p̂en(m)− p̂en(m̂).

We introduce the unit ball and the set:

BfT
m,m′(0, 1) = {t ∈ Sm + Sm′ , ‖t‖fT = 1}, ΩN =

⋂
m∈M+

N

Ωm,

where Ωm is de�ned by (36). We split again:

E
[
‖b̂m̂ − bA‖2N1ΞN

]
= E

[
‖b̂m̂ − bA‖2N1ΞN∩ΩN

]
+ E

[
‖b̂m̂ − bA‖2N1ΞN∩ΩcN

]
.

The term E(‖b̂m̂ − bA‖2N1ΩcN∩ΞN ) is bounded analogously as E(‖b̂m̂ − bA‖2N1ΞcN
), using that by

Lemma 3, P(ΞN ∩ Ωc
N ) ≤

∑
m∈M+

N
P(Ωc

m) ≤ c′/(NT )6.

Then, we study the expectation on ΞN ∩ΩN . On ΩN , the following inequality holds: ‖t‖2fT ≤
2‖t‖2N , ∀t ∈ SM+

N
. We get, on ΞN ∩ ΩN ,

‖b̂m̂ − bA‖2N ≤‖bm − bA‖2N +
1

8
‖b̂m̂ − bm‖2fT + (8 sup

t∈BfTm̂,m(0,1)

ν2
N (t) + p̂en(m)− p̂en(m̂))

≤
(

1 +
1

2

)
‖bm − bA‖2N +

1

2
‖b̂m̂ − bA‖2N + 8

(
sup

t∈BfTm̂,m(0,1)

ν2
N (t)− p(m, m̂)

)
+

+ p̂en(m) + 8p(m, m̂)− p̂en(m̂).(54)

Note that, in the case ‖σA‖∞ < +∞, pen1(m) = p̂en(m) is deterministic. Therefore, we can
complete the proof of the �rst inequality of Theorem 1 applying the following Lemma.

Lemma 6. Assume that ‖σA‖∞ < +∞. Then there exists a numerical constant τ such that for
p(m,m′) = τ‖σA‖2∞(m+m′)/(NT ),

E

( sup
t∈BfTm̂,m(0,1)

ν2
N (t)− p(m, m̂)

)
+
1ΞN∩ΩN

 ≤ c‖σ2
A‖∞

1

NT
.
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Indeed, we choose κ ≥ 8τ in pen1(m) and the �rst inequality of Theorem 1 follows. For the sec-
ond inequality, we proceed as in the proof of Theorem 2 in Comte and Genon-Catalot (2018b). 2

Proof of Lemma 6. When σA is bounded, for t a A-supported function,

〈M〉T =

∫ T

0

N∑
i=1

t2(Xi(u))σ2(Xi(u))du ≤ NT‖σ2
A‖∞‖t‖2N .

Thus, by Lemma 2, we obtain: P(νN (t) ≥ ε, ‖t‖2N ≤ v2) ≤ exp(−NTε2/(2‖σ2
A‖∞v2)). After-

wards, as in Comte et al. (2007), we use the L2-chaining technique described in Baraud et al.
(Section 7, p.44-47, Lemma 7.1, with s2 = ‖σ2

A‖∞/T ). 2

Now we no longer assume σA bounded and we consider Laguerre and Hermite bases to complete
the proof of Theorem 2. We have the following Lemma.

Lemma 7. Assume (A1)-(A4). Then there exists a numerical value τ1 such that νN (t) satis�es

E

( sup
t∈BfTm̂,m(0,1)

ν2
N (t)− p(m, m̂)

)
+
1ΞN∩ΩN

 ≤ C

NT

where p(m,m′) = sup(p(m), p(m′)) with

p(m) = τ1
m(1 + `m)‖Ψ−1/2

m Ψm,σ2Ψ
−1/2
m ‖op

NT
.

For κ1 ≥ 8τ1, 8p(m,m′) ≤ pen(m) + pen(m′) . Therefore, plugging the result of Lemma 7 in
(54) and taking expectation yield that

1

2
E(‖b̂m̂ − bA‖2N1ΞN∩ΩN ) ≤3

2
‖bm − bA‖2N + pen(m) +

C

NT
+ E(p̂en(m)1ΞN∩ΩN ) + E[(pen(m̂)− p̂en(m̂))+1ΞN∩ΩN ).

Now we have the following Lemma, the proof of which is omitted as it is similar to Lemma 6.5
in Comte and Genon-Catalot (2019).

Lemma 8. Under the assumptions of Theorem 2, there exist constants c1, c2 > 0 such that for

m ∈MN and m̂ ∈ M̂N ,

E(p̂en(m)1ΞN∩ΩN ) ≤ c1pen(m) +
c2

NT

E[(pen(m̂)− p̂en(m̂))+1ΞN∩ΩN ) ≤ c2

NT
.

Note that c2 contains
∫
|σA|4+56/βfT . Lemma 8 concludes the study of the expectation of the

empirical risk on ΞN ∩ ΩN . This gives the �rst inequality of Theorem 2. The second inequality
is obtained following the lines of the proof of Theorem 2 in Comte and Genon-Catalot (2018b).
2

6.6. Proof of Lemma 7. De�ne the set

Ωm,σ2 =

{∣∣∣∣ ‖tσ‖2N‖tσ‖2fT
− 1

∣∣∣∣ ≤ 1

2
, ∀t ∈ Sm \ {0}

}
, ΩN,σ2 =

⋂
m∈M+

N

Ωm,σ2 .

We need the following Lemma, similar to Lemma 3, which determines the constant fT .
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Lemma 9. Consider Laguerre or Hermite basis. Assume that (A1)-(A4) hold. Then, P(Ωc
m,σ2) ≤

c/(NT )6 and P(Ωc
N,σ2) ≤ c/(NT )5.

Note that

sup
‖t‖fT =1

‖tσ‖2fT = sup
‖Ψ1/2

m ~a‖2,m=1

t ~aΨm,σ2~a = sup
‖~u‖2,m=1

t ~uΨ−1/2
m Ψm,σ2Ψ−1/2

m ~u = ‖Ψ−1/2
m Ψm,σ2Ψ−1/2

m ‖op.

This implies

(55) sup
t∈Sm,‖t‖fT =1

ν2
N (t) ≤ ‖Ψ−1/2

m Ψm,σ2Ψ−1/2
m ‖op sup

t∈Sm,‖tσ‖fT =1
ν2
N (t).

We have

E

( sup
t∈Sm,‖t‖fT =1

ν2
n(t)− p(m)

)
+

1ΞN∩ΩN

 = E[T?
1(m)] + E[T?

2(m)]

with A(m) :=
(

supt∈Sm,‖t‖fT =1 ν
2
n(t)− p(m)

)
+
, T?

1(m) = A(m)1ΞN∩ΩN∩ΩN,σ2 , and T?
2(m) =

A(m)1ΞN∩ΩN∩Ωc
N,σ2

. Now, by using (55), we have

E[T?
1(m)] ≤ ‖Ψ−1/2

m Ψm,σ2Ψ−1/2
m ‖opE

( sup
t∈Sm,‖tσ‖fT =1

ν2
N (t)− q(m)

)
+

1ΩN,σ2

 ,
with q(m) = τ1m(1 + `m)/(NT ).

Following the proof of Proposition 3 in Comte et al. (2007) (see also Baraud et al., 2001,
Theorem 3.1 and Proposition 6.1, in the regression model case), there exists a numerical constant
τ1 such that

E

( sup
t∈Sm,‖tσ‖fT =1

ν2
N (t)− q(m)

)
+

1ΩN,σ2

 ≤ ce−m`m
NT

As a consequence, for the same numerical constant τ1,

E[T ?1 (m)] ≤ ce
−m`m

NT
‖Ψ−1/2

m Ψm,σ2Ψ−1/2
m ‖op.

Moreover ‖Ψ−1/2
m Ψm,σ2Ψ

−1/2
m ‖op ≤ ‖Ψ−1

m ‖op‖Ψm,σ2‖op, and we have

‖Ψm,σ2‖op = sup
‖~a‖2,m=1

t~aΨm,σ2~a = sup
‖~a‖2,m=1

∫ m−1∑
j=0

ajϕj(y)

2

σ2(y)fT (y)dy ≤ c2
ϕm

∫
σ2fT ,

Therefore, for c1 = c2
ϕ

∫
σ2fT ,

E[T?
1(m ∨ m̂)] ≤

∑
m∈M+

N

E[T?
1(m)] ≤ c1

∑
m∈M+

N

me−m`m‖Ψ−1
m ‖op ≤ c1Σ

under condition (30). Thus, we get

E[( sup
t∈Sm∨m̂,‖t‖fT =1

ν2
N (t)− p(m, m̂))+1ΞN∩ΩN∩ΩN,σ2 ] ≤ C

NT
.

Now, we have to study E[T?
2(m ∨ m̂)]. First,

p(m) ≤ κ1c
2
ϕ

m2(1 + `m)

NT
‖Ψ−1

m ‖op

∫
σ2fT ≤ Cm‖Ψ−1

m ‖2op ≤ C ′NT
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as ‖Ψ−1
m ‖op ≥ m under (A3) and m ∈M+

N . This yields

E[p(m, m̂)1ΞN∩ΩN∩Ωc
N,σ2

] ≤ CNTP(Ωc
N,σ2) ≤ c/(NT )4.

Second,

E[( sup
t∈Sm∨m̂,‖t‖fT =1

ν2
N (t))1ΞN∩ΩN∩Ωc

N,σ2
] ≤ E1/2[ sup

t∈S
M+
N
,‖t‖fT =1

ν4
N (t)]P1/2(ΩN ∩ Ωc

N,σ2).

Then, we write, setting M = M+
n for sake of simplicity,

E( sup
t∈SM ,‖t‖fT =1

ν4
N (t)) ≤M

M−1∑
k=0

Eν4
N (

M−1∑
j=0

[Ψ
−1/2
M ]jkϕj) = M

M−1∑
k=0

Eν4
N ([Ψ

−1/2
M ϕ]k)

≤ c
M

(NT )4

M−1∑
k=0

E

(∫ T

0

N∑
i=1

(
[Ψ
−1/2
M ϕ(Xi(s))]k

)2
σ2(Xi(s))ds

)2

≤ cM

(NT )2

∫
(
M−1∑
k=0

[Ψ
−1/2
M ϕ(y)]2k)

2σ4
A(y)fT (y)dy ≤ cM

(NT )2

∫
(
M−1∑
j=0

ϕ2
j (y))2‖Ψ−1

M ‖
2
opσ

4
A(y)fT (y)dy

≤ cc4
ϕ

M3

(NT )2
‖Ψ−1

M ‖
2
op

∫
σ4
A(y)fT (y)dy ≤ CNT

∫
σ4
A(y)fT (y)dy.

Thus,

E[( sup
t∈Sm∨m̂,‖t‖fT =1

ν2
N (t))1ΞN∩ΩN∩Ωc

N,σ2
] ≤ c(NT )1/2/(NT )5/2 = c/(NT )2.

We obtain E[T?
2(m ∨ m̂)] . 1/(NT )2. This ends the proof of Lemma 7. 2

Proof of Lemma 9. Analogously as for Ωm, we have

Ωm,σ2 =

{
‖Ψ−1/2

m,σ2Ψ̂m,σ2Ψ
−1/2
m,σ2 − Idm‖op >

1

2

}
.

Therefore, we apply the Cherno� matrix inequality stated in Theorem 1.1 of Tropp (2012). To

that aim, we write Ψ
−1/2
m,σ2Ψ̂m,σ2Ψ

−1/2
m,σ2 as a sum of independent matrices

Ψ
−1/2
m,σ2Ψ̂m,σ2Ψ

−1/2
m,σ2 =

1

N

N∑
i=1

Km,σ2(Xi),

with Km,σ2(Xi) = Ψ
−1/2
m,σ2

(
1

T

∫ T

0
ϕj(Xi(u))ϕk(Xi(u))σ2(Xi(u))du

)
0≤j,k≤m−1

Ψ
−1/2
m,σ2 .

Clearly, E(Km,σ2(Xi)) = Idm, so that µmin = µmax = 1 and

P(Ωc
m,σ2) ≤ 2m exp(−cT (1/2)

NT

R
)
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with cT (δ) = (δ + (1 − δ) log(1 − δ))/T and R is an upper bound on the largest eigenvalue of
Km,σ2(X1). Now we have a.s.

‖Km,σ2(X1)‖op = sup
‖~x‖2,m=1,y=Ψ

−1/2

m,σ2x

1

T

∫ T

0

m−1∑
j=0

yjϕj(Xi(u))

2

σ2(Xi(u))du

≤ ‖Ψ−1
m,σ2‖op

1

T

∫ T

0

m−1∑
j=0

ϕ2
j (Xi(u))σ2(Xi(u))du

Now, we use that σ2(x) ≤ K(1+x2) withK known. If ϕj = `j , the Laguerre basis on A = R+, we

have |`j |2 ≤ 2 and (see e.g. Comte and Genon-Catalot, 2018a, Section 8): x`j(x) = − j+1
2 `j+1 +

(j + 1
2)`j(x)− j

2`j−1(x). This implies,

‖Km,σ2(X1)‖op ≤ K(2m+ 9m3 + 9m2 +m)‖Ψ−1
m,σ2‖op ≤ K(3m+ 18m3)‖Ψ−1

m,σ2‖op

≤ 21Km3‖Ψ−1
m,σ2‖op := R.

If ϕj = hj , the Hermite basis on A = R, we have |hj | ≤ C∞(j + 1)−1/12, j = 0, 1, . . . (with the
constant C∞ given in Szegö (1975)) and (see e.g. Comte and Genon-Catalot, 2018a, Section 8):

2xhj(x) =
√

2(j + 1)hj+1 +
√

2jhj−1(x).

This yields

‖Km,σ2(X1)‖op ≤ KC2
∞(m5/6 + 3m11/6)‖Ψ−1

m,σ2‖op ≤ 2KC2
∞m

11/6‖Ψ−1
m,σ2‖op := R.

Let us noteR = Bmb‖Ψ−1
m,σ2‖op with (B, b) = (21K, 3) with Laguerre and (B, b) = (2KC2

∞, 11/6)

for Hermite basis. We obtain

P(Ωc
m,σ2) ≤ 2m exp

(
−cT (1/2)

NT

Bmb‖Ψ−1
m,σ2‖op

)
≤ 1

(NT )6

if m ≤ NT and

(56) Bmb‖Ψ−1
m,σ2‖op ≤ cT (1/2)

NT

7 log(NT )
.

Now, for σ2(x) ≥ σ2
0, we get ‖Ψ

−1
m,σ2‖op ≤ σ2

0‖Ψ−1
m ‖op, so that the above condition is satis�ed if

Bσ2
0m

b‖Ψ−1
m ‖op ≤ cT (1/2)

NT

7 log(NT )
.

By de�nition ofMN and under (A3), we have mb‖Ψ−1
m ‖op ≤ m‖Ψ−1

m ‖2op so that for

fT = dT ∧
cT (1/2)

7Bσ2
0

= dT ∧
1− log(2)

14TBσ2
0

condition (56) is ful�lled and the bound is true. 2
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6.7. Proof of Proposition 3. We use the following representation (see e.g. Rogers (1985)).
For (i) Set B(y) =

∫ y
0 b(u)du. Then,

pt(x, y) =
1√
2πt

exp (B(y)−B(x)− (y − x)2

2t
)E(exp (− t

2

∫ 1

0
g((1− u)x+ uy +

√
tB0

u)du)),

g = b2 + b′ et (B0
u, u ∈ [0, 1]) is a standard Brownian bridge. As |b′| ≤M and |b| ≤M , then,

pt(x, y) ≤ 1√
2πt

exp [M |y − x|+M
t

2
− (y − x)2

2t
] ≤ 1√

2πt
exp [M

t

2
+ 2M2t− (y − x)2

4t
].

it follows that

fT (y) ≤ 2T 1/2

√
2π

exp [M
T

2
+ 2M2T ]

which implies (i).
For (ii), we consider the model dX(t) = b(X(t))dt+σ(X(t))dWt, where b, σ are functions from
R to R. Setting F (.) =

∫ .
0

1
σ(u)du, the process Yt = F (X(t)) satis�es

dYt = α(Yt)dt+ dWt,

with α(y) = b(F−1(y)
σ(F−1(y)

− 1
2σ
′(F−1(y)). The transition density pt(x, x

′) of X is linked to the

transition density qt(y, y
′) of Y by: pt(x, x

′) = qt(F (x), F (x′))1/σ(x′). As σ′, σ′′ are bounded
and obtain that ‖fT ‖∞ < +∞. 2

7. A theoretical tool

Theorem 3. (Matrix Cherno�, Tropp (2012)) Consider a �nite sequence {Xk} of independent,
random, self-adjoint matrices with dimension d. Assume that each random matrix satis�es

Xk < 0 and λmax(Xk) ≤ R almost surely.

De�ne µmin := λmin(
∑

k E(Xk)) and µmax := λmax(
∑

k E(Xk)). Then

P

{
λmin

(∑
k

Xk

)
≤ (1− δ)µmin

}
≤ d

[
e−δ

(1− δ)1−δ

]µmin/R

for δ ∈ [0, 1] and

P

{
λmax

(∑
k

Xk

)
≥ (1 + δ)µmax

}
≤ d

[
eδ

(1 + δ)1+δ

]µmax/R

for δ ≥ 0.
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