A Splitting in Time Scheme and Augmented Lagrangian Method for a Nematic Liquid Crystal Problem - Archive ouverte HAL
Article Dans Une Revue Journal of Scientific Computing Année : 2015

A Splitting in Time Scheme and Augmented Lagrangian Method for a Nematic Liquid Crystal Problem

Résumé

We study the numerical approximation of nematic liquid crystal flows governed by a Ericksen-Leslie problem. This problem couples the incompressible Navier-Stokes dynamic with a gradient flow system related to the orientation unitary vector of molecules. First, a two sub-step viscosity-splitting time scheme is proposed. The first sub-step couples diffusion and convection terms whereas the second one is concerned with diffusion terms and constraints (divergence free and unit director field). Then, in the first sub-step we use a Gauss-Seidel decoupling algorithm, and in the second sub-step, we use Uzawa type algorithms on augmented Lagrangian functionals to overcome the divergence free constraint and the unit director field constraint. From the computational point of view, it is a fully decoupled linear scheme (where all systems to solve are for scalar variables). Some numerical experiments in 2D are carried out by using only linear finite elements in space, confirming the viability and the convergence of our scheme.
Fichier principal
Vignette du fichier
JSC-Guillen-Koko-v3.pdf (316.46 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02081397 , version 1 (27-03-2019)

Identifiants

  • HAL Id : hal-02081397 , version 1

Citer

F. Guillén González, Jonas Koko. A Splitting in Time Scheme and Augmented Lagrangian Method for a Nematic Liquid Crystal Problem. Journal of Scientific Computing, 2015. ⟨hal-02081397⟩
70 Consultations
103 Téléchargements

Partager

More