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Abstract

We study the numerical approximation of nematic liquid crystal flows governed by

a Ericksen-Leslie problem. This problem couples the incompressible Navier-Stokes dy-

namic with a gradient flow system related to the orientation unitary vector of molecules.

First, a two sub-step viscosity-splitting time scheme is proposed. The first sub-step

couples diffusion and convection terms whereas the second one is concerned with dif-

fusion terms and constraints (divergence free and unit director field). Then, in the

first sub-step we use a Gauss-Seidel decoupling algorithm, and in the second sub-step,

we use Uzawa type algorithms on augmented Lagrangian functionals to overcome the

divergence free constraint and the unit director field constraint. From the computa-

tional point of view, it is a fully decoupled linear scheme (where all systems to solve

are for scalar variables). Some numerical experiments in 2D are carried out by using

only linear finite elements in space, confirming the viability and the convergence of our

scheme.

Keywords: Ericksen-Leslie’s nematic model, splitting in time schemes, Augmented La-

grangian, mixed formulation.
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1 Introduction

The liquid crystal model

We consider the following simplified Ericksen-Leslie’s problem in Q = (0, T )×Ω modeling a

nematic liquid crystal fluid filling a bounded domain Ω ⊂ IRN (N = 2 or 3 in practice) with

boundary ∂Ω and Σ = (0, T )× ∂Ω:

∂td+ (u · ∇)d− γ∆d+ q d = 0, (1)

|d| = 1, (2)

∂tu+ (u · ∇)u− ν∆u +∇p+ λ(∇d)t∆d = f, (3)

∇ · u = 0, (4)

u|Σ = 0, d|Σ = l, (5)

u|t=0 = u0, d|t=0 = d0. (6)

The unknowns of this problem are:

• d : Q → IRN the orientation of liquid crystal molecules with q : Q → IR the Lagrange

multiplier associated with the unitary constraint (2),

• u : Q → IRN the fluid velocity and p = p̃+λ|∇d|2/2 the Lagrange multiplier associated

with the incompressibility constraint (4), where p̃ : Q → IR is the pressure.

The data are:

• f : Q → IRN the external force,

• l : Σ → IRN the Dirichlet boundary data for d, and

• u0, d0 : Ω → IRN the initial data.

Finally, γ, ν, λ > 0 are given constants. Hereafter, |d| and |∇d| denotes the euclidean

norm of the vector d ∈ IRN or the matrix ∇d ∈ IRN×N , respectively. (∇d)t denotes the

transpose matrix of ∇d.

Eventually, the Dirichlet condition d|Σ = l can be changed by the homogeneous Neumann

condition

∂nd|Σ = 0

where n is the unit outward normal to ∂Ω.

It is easy to deduce, multiplying (1) by d and applying (2), that q = −γ|∇d|2, hence
the Lagrange multiplier q has an explicit expression in function of d. Nevertheless, we are

going to keep the unknown q because in the fully-discrete numerical schemes this explicit

expression will be lost.
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Known results

First numerical results related to problem (1)-(6) are based on the discretization of a pe-

nalized problem of (1)-(6) by means of a Ginzburg-Landau functional depending on the a

penalized parameter ε (see for instance [5, 15, 16, 14, 9, 10]). All these schemes suffer from

the disadvantage of being sensitive to the choice of the penalty parameter ε.

In [3], Becker, Feng and Prohl considered two nonlinear fully discrete C0-finite element

methods. The first scheme discretizes the Ginzburg-Landau penalized problem and it is

unconditionally energy-stable (conserving decreasing the energy associated with the contin-

uous problem) and converges towards the penalized problem. The second algorithm in [3]

discretizes directly (1)-(6) and is unconditionally energy-stable, although the convergence

when the discrete time and space parameters go to zero remains as an open problem. This

second algorithm is based on a reformulation of the d-system (1) by using vectorial products,

arriving at a non-linear and fully coupled scheme, which is implemented in practice via the

iterative Newton’s method.

On the other hand, a finite element scheme based on a saddle-point formulation of the

director vector is proposed in [1], allowing to consider the limit problem (1)-(6) and the

penalized problem (using a Ginzburg-Landau functional) in a unified way. In this case, a

linear time semi-implicit algorithm is introduced which is unconditionally stable (satisfying

a discrete energy inequality), although the resulting scheme is fully coupled.

Finally, for the director vector only problem (i.e. problem (1)-(2) with u = 0), Glowinski,

Lin and Pan describe in [5], a splitting in time scheme based on the Chorin-Temam projection

method for fluids. Moreover, a scheme is given for the limit problem (1)-(2) and another one

for the corresponding penalized version.

Novelty of the paper

In this paper we design a new fully discrete algorithm approximating directly the prob-

lem (1)-(6), which is completely different from the second scheme presented in [3] and the

schemes given in [5, 1]. This new scheme is based on a viscosity-splitting scheme in time,

an iterative fixed-point method for the coupled non-symmetric problem without constraint

and the augmented Lagrangian algorithm in space associated with two symmetric mixed

problems:

• a Stokes type problem for the fluid part;

• a director vector problem with the unitary constraint, introducing the Lagrange mul-

tiplier associated to the non-convex constraint |d| = 1.

Then, our scheme decouples the Lagrange multipliers with respect to the primal variables

as velocity and director vector. Moreover, the vectorial systems for the velocity and director

vector will be decoupled by components. To our knowledge, this is the first fully decoupled
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linear scheme applied to the Ericksen-Leslie’s problem (1)-(6). Some numerical computations

are presented performing the convergence and viability of this new scheme.

Organization of the paper

The rest of the paper is organized as follows. In Section 2 a first time scheme is presented,

splitting the convection nonlinear terms from the constraints (incompressibility and director

vector in the unit sphere). Then, fully decoupled strategies for the three different problems

appearing in the previous time-splitting scheme will be described in Sections 3, 4 and 5,

respectively. Finally, the numerical results are presented in Section 6, by using only linear

finite elements in space.

2 A viscosity-splitting time discrete scheme

The time interval [0, T ] is divided into M subintervals of equal length k = T/M (by simplic-

ity), considering the partition {tn = n k}Mn=1. We would like to compute {un, pn, dn, qn} as

approximations of {u(tn), p(tn), d(tn), q(tn)}.
For this, let us start with the following time discrete scheme, which is related to the

so-called viscosity-splitting algorithm, see [2, 11, 12] for the Navier-Stokes case:

Initialization. Let u0 = u0 and d0 = d0.

Step n ≥ 1. Given (un−1, dn−1), we compute (un, pn, dn, qn) via the following two sub-step

scheme.

Sub-step 1. Given (un−1, dn−1), compute (ũn, d̃n) as the solution of the coupled linear system

1

k
(d̃n − dn−1) + (ũn · ∇)dn−1 − γ∆d̃n = 0, (7)

1

k
(ũn − un−1) + (un−1 · ∇)ũn +

1

2
(∇ · un−1)ũn

−ν∆ũn + λ(∇dn−1)t∆d̃n = fn. (8)

Sub-step 2. Given (ũn, d̃n), compute (un, pn) and (dn, qn) as the solution of the following two

uncoupled systems

(un, pn) s.t.
1

k
(un − ũn)− ν∆(un − ũn) +∇pn = 0, ∇ · un = 0, (9)

(dn, qn) s.t.
1

k
(dn − d̃n)− γ∆(dn − d̃n) + qndn = 0, |dn| = 1, (10)

Obviously, systems (7)-(8), (9) and (10) must be endowed with the exact boundary conditions

related to (5):

ũn|∂Ω = 0 = un|∂Ω and d̃n|∂Ω = l(tn) = dn|∂Ω.

4



In order to describe a fully decoupled the above time discretization scheme, we will

analyze separately the three different previous subproblems: the coupled problem (7)-(8) of

sub-step 1, and the two decoupled problems (9) and (10) of sub-step 2.

3 Solution of the problem (7)− (8)

For simplicity, in this Section we will use the notations u = ũn, d = d̃n, u∗ = un−1, d∗ = dn−1

and f = fn. Hence, given (u∗, d∗), the problem (7)-(8) can be rewritten as:

Find (u, d) such that

1

k
(u− u∗) + (u∗ · ∇)u+

1

2
(∇ · u∗)u− ν∆u + λ(∇d∗)t∆d = f. (11)

1

k
(d− d∗) + u · ∇d∗ − γ∆d = 0. (12)

As in [9], we subtract from d a “lifting” function d
n
as a solution of the Laplace-Dirichlet

problem

∆d
n

= 0, in Ω,

d
n

= l(tn), on ∂Ω.

If we set

d̂ = d− d
n
,

then d̂ is the solution of the problem ∆d̂ = ∆d and d̂ = 0 on ∂Ω. Again as in [9], we also

introduce the auxiliary variable

w = −
√
λ∆d = −µ∆d = −µ∆d̂,

where µ =
√
λ. Then (u, d) is a solution of (11)-(12) if, and only if, (u, d = d̂ + d

n
, w) is a

solution of the coupled system

1

k
(u− u∗) + (u∗ · ∇)u+

1

2
(∇ · u∗)u− ν∆u − µ(∇d∗)tw = f. (13)

µ

k
(d− d∗) + µ(u · ∇)d∗ + γ w = 0, (14)

µ∆d̂+ w = 0. (15)

To introduce the variational formulation of (13)-(15), we define the following trilinear form

c(u∗, u, ū) = ((u∗ · ∇)u, ū) +
1

2
(∇ · u∗, u · ū), ∀ u∗, u, ū ∈ H1

0 (Ω)
N .

Hereafter we denote by (·, ·) the scalar product in L2(Ω). The variational formulation of

(13)-(15) can be written as follows:
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Find (u, d = d̂+ d
n
, w) ∈ H1

0 (Ω)
N ×H1(Ω)N × L2(Ω)N such that

1

k
(u− u∗, ū) + ν(∇u,∇ū) + c(u∗, u, ū)− µ((∇d∗)tw, ū) = (f, ū), ∀ū ∈ H1

0 (Ω)
N , (16)

µ

k
(d− d∗, w̄) + µ((u · ∇)d∗, w̄) + γ(w, w̄) = 0, ∀w̄ ∈ L2(Ω)N , (17)

µ(∇d̂,∇d̄)− (w, d̄) = 0, ∀d̄ ∈ H1
0 (Ω)

N . (18)

To solve (16)-(18), we use a successive iterative method studied in [9] (see Algorithm 1).

Note that problem (19) in Algorithm 1 is equivalent to N decoupled convection-diffusion

equations, one for each component of the velocity field u(ℓ). Hence N linear non-symmetric

systems depending on the time step must be solved. On the other hand, problem (20) in

Algorithm 1 decouples each component of the pair (d̂(ℓ+1), w(ℓ+1)). Moreover, since w(ℓ+1)

will be approximated by P0 finite elements, we can eliminate each component of w(ℓ+1) from

(20)1 in function of the corresponding component of d̂(ℓ+1) in (20)2 by the so-called “static

condensation” process. Then, problem (20) is equivalent to solving N linear symmetric

systems independent from the time step.

Algorithm 1 Successive iterative algorithm for the coupled problem (7)-(8)

Initialization: Let w(0) be given (w(0) = wn−1 if n ≥ 2 or w(0) = −µ∆d̂0 if n = 1).

Step ℓ ≥ 0: Let w(ℓ) ∈ L2(Ω)N be given.

1. Compute u(ℓ) ∈ H1
0 (Ω)

N such that for all ū ∈ H1
0 (Ω)

N :

1

k
(u(ℓ), ū)+ν(∇u(ℓ),∇ū)+c(u∗, u(ℓ), ū) = (f, ū)+

1

k
(u∗, ū)+µ((∇d∗)tw(ℓ), ū). (19)

2. Compute (d̂(ℓ+1), w(ℓ+1)) ∈ H1
0 (Ω)

N ×L2(Ω)N such that for all (d̄, w̄) ∈ H1
0 (Ω)

N ×
L2(Ω)N :

{ µ

k
(d̂(ℓ+1), w̄) + γ(w(ℓ+1), w̄) =

µ

k
(d∗ − d

n
, w̄)− µ(u(ℓ) · ∇d∗, w̄),

µ(∇d̂(ℓ+1),∇d̄)− (w(ℓ+1), d̄) = 0.
(20)

3. We stop iterating (19)-(20) as soon as

‖ u(ℓ) − u(ℓ−1) ‖2L2 + ‖ d(ℓ) − d(ℓ−1) ‖2L2 + ‖ w(ℓ) − w(ℓ−1) ‖2L2

‖ u(ℓ) ‖2L2 + ‖ d(ℓ) ‖2L2 + ‖ w(ℓ) ‖2L2

≤ ε2. (21)

4 Solution of the problem (9)

By using the notations u = un and p = pn, the problem (9) is rewritten as:
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Find (u, p) such that

1

k
(u− ũn)− ν(∆u− ν∆ũn) +∇p = 0, ∇ · u = 0, u|∂Ω = 0. (22)

Let us introduce the bilinear and linear forms

a1(u, ū) =
1

k
(u, ū) + ν(∇u,∇ū), ∀ u, ū ∈ H1

0 (Ω)
N

τ1(ū) =
1

k
(ũn, ū) + ν(∇ũn,∇ū), ∀ ū ∈ H1

0 (Ω)
N

and the (quadratic and convex) functional F1 : H
1
0 (Ω)

N → IR defined by

F1(ū) =
1

2
a1(ū, ū)− τ1(ū)

In (22), the pressure p is the Lagrange multiplier associated with the divergence constraint

∇·u = 0. Therefore, (22) is the (strong) saddle-point formulation of the following constrained

minimization problem:

Find u ∈ H1
0 (Ω)

N with ∇ · u = 0 such that:

F1(u) ≤ F1(ū), ∀ ū ∈ H1
0 (Ω)

N with ∇ · ū = 0. (23)

The saddle-point (u, p) of the constrained problem (23) can be computed using Uzawa/conjugate

gradient algorithm operating in the space H1(Ω) ∩ L2
0(Ω) for the pressure, where

L2
0(Ω) =

{
p ∈ L2(Ω),

∫

Ω

pdx = 0

}
.

This space H1(Ω) ∩ L2
0(Ω) is endowed with the scalar product (∇p,∇q).

The resulting conjugate gradient algorithm is then preconditioned by the discrete op-

erator equivalent of (−∆), see e.g. [6, 7]. The corresponding Uzawa/conjugate gradient

algorithm is described in Algorithm 2. Note that the vectorial problems (24) and (25) in

Algorithm 2 are decoupled by components.

5 Solution of the problem (10)

Again for simplicity, in this Section we set d = dn and q = qn. Hence, problem (10) is

rewritten as:

Find (u, q) such that

1

k
(d− d̃n)− γ∆d + q d = −γ∆d̃n, |d| = 1, d|∂Ω = ln. (30)

To simplify we introduce the forms

a2(d, d̄) =
1

k
(d, d̄) + γ(∇d,∇d̄), ∀ d, d̄ ∈ H1(Ω)N

τ2(d̄) =
1

k
(d̃n, d̄) + γ(∇d̃n,∇d̄), ∀ d̄ ∈ H1(Ω)N
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Algorithm 2 Uzawa/conjugate gradient algorithm for the Stokes problem (22)

Initialization: Let p(0) ∈ L2
0(Ω) be given (p(0) = pn−1 if n ≥ 2 or p(0) = 0).

1. Compute u(0) ∈ H1
0 (Ω)

N via

a1(u
(0), ū) = τ1(ũ

n−1, ū) + (p(0),∇ · ū), ∀ū ∈ H1
0 (Ω)

N . (24)

2. Compute g(0) ∈ L2
0(Ω) via

(∇g(0),∇ḡ) = (∇ · u(0), ḡ), ∀ḡ ∈ L2
0(Ω).

3. Set p̄(0) = g(0)

Step ℓ ≥ 0: Let p(ℓ), u(ℓ), g(ℓ), p̄(ℓ) be given.

1. Compute u(ℓ) ∈ H1
0 (Ω)

N via

a1(u
(ℓ), ū) = (p̄(ℓ),∇ · ū), ∀ū ∈ H1

0 (Ω)
N . (25)

2. Compute g(ℓ) ∈ L2
0(Ω) via

(∇ḡ(ℓ),∇ḡ) = (∇ · u(ℓ), ḡ), ∀ḡ ∈ L2
0(Ω). (26)

3. Compute the step size

t(ℓ) =
(∇g(ℓ),∇g(ℓ))

(p̄(ℓ),∇ · u(ℓ))
. (27)

4. Update p(ℓ), g(ℓ) and u(ℓ)

p(ℓ+1) = p(ℓ) − t(ℓ)p̄
(ℓ), g(ℓ+1) = g(ℓ) − t(ℓ)g

(ℓ), u(ℓ+1) = u(ℓ) − t(ℓ)u
(ℓ). (28)

5. If
∣∣∇g(ℓ+1)

∣∣2
L2

|∇g0|−2
L2 ≤ ε2, then pn = p(ℓ+1) and un = u(ℓ+1); else compute

ρ(ℓ) =

∣∣∇g(ℓ+1)
∣∣2
L2

|∇g(ℓ)|2L2

.

Compute the new conjugate direction:

p̄(ℓ+1) = g(ℓ+1) + ρ(ℓ)p̄
(ℓ). (29)

6. We stop iterating (25)-(29) as soon as

(∇g(ℓ),∇g(ℓ))

(∇g(0),∇g(0))
≤ ε.
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and the (quadratic and convex) functional F2 : H
1(Ω)N −→ IR, defined by

F2(d̄) =
1

2
a2(d̄, d̄)− τ2(d̄)

In (30), the term qd is the Lagrange multiplier associated with the restriction |d| =

1. Therefore, (30) is the (strong) saddle-point formulation of the following constrained

minimization problem (with non-convex restriction):

Find d ∈ H1
ln(Ω)

N with |d| = 1, such that:

F2(d) ≤ F2(d̄), ∀ d̄ ∈ H1
ln(Ω)

N with |d̄| = 1, (31)

where H1
ln(Ω)

N is the affine subspace

H1
ln(Ω)

N =
{
d ∈ H1(Ω)N : d|∂Ω = ln

}
.

The augmented Lagrangian formulation combines the advantages of both the Lagrange mul-

tiplier method and the penalty method without suffering from disadvantage of either. More-

over, there is no need to increase the penalty parameter to infinity.

Let us introduce the set of point-wise constraint

C =
{
d : d ∈ L2(Ω)N ; |d| = 1 a.e. in Ω

}

and its characteristic function

χC(d) =

{
0 if d ∈ C

+∞ if d 6∈ C.

Then, the problem (31) is equivalent to

d ∈ H1
ln(Ω)

N s.t. F2(d) + χC(d) ≤ F2(d̄) + χC(d̄), ∀d̄ ∈ H1
ln(Ω)

N . (32)

We associate with (32) the Augmented Lagrangian functional Lr : H
1
ln(Ω)

N × L2(Ω)N ×
L2(Ω)N , defined by

Lr(d, e, µ) = F2(d) + χC(e) +
r

2
|d− e|2L2 + (µ, d− e), (33)

with r > 0 an “augmentation” parameter. A saddle-point (d, e, µ) of (33), can be approxi-

mated by a (standard) Uzawa-type algorithm of the form (µ(0) given):

1. Given µ(ℓ), find (d(ℓ), e(ℓ)) such that

Lr(d
(ℓ), e(ℓ), µ(ℓ)) ≤ Lr(d̄, ē, µ

(ℓ)), ∀ (d̄, ē) ∈ (H1
ln)

N × L2(Ω)N .

2. Update the multiplier

µ(ℓ+1) = µ(ℓ) + r(d(ℓ) − e(ℓ)).
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For obvious decomposition properties, we prefer the following (Uzawa) block-relaxation

type algorithm [4]. Starting from (e(0), µ(0)) ∈ L2(Ω)N × L2(Ω)N (e(0) = µ(0) = dn−1), we

compute successively d(ℓ+1), e(ℓ+1) and µ(ℓ+1) as follows:

d(ℓ+1) ∈ (H1
ln)

N , Lr(d
(ℓ+1), e(ℓ), µ(ℓ)) ≤ Lr(d̄, e

(ℓ), µ(ℓ)), ∀ d̄ ∈ (H1
ln)

N , (34)

e(ℓ+1) ∈ L2(Ω)N , Lr(d
(ℓ+1), e(ℓ+1), µ(ℓ)) ≤ Lr(d

(ℓ+1), ē, µ(ℓ)), ∀ ē ∈ L2(Ω)N , (35)

µ(ℓ+1) = µ(ℓ+1) + r(d(ℓ+1) − e(ℓ+1)). (36)

Obviously, the discrete approximation space for e(ℓ) and µ(ℓ) will be the same as for the

director field d(ℓ).

Taking into account some simplifications, (34)-(36) lead to Algorithm 3, where imple-

mentation of (35) and (36) are made of explicit manner. Moreover, the vectorial problem

(37) of Algorithm 3 is decoupled by components.

Algorithm 3 Uzawa block-relaxation algorithm for the subproblem (10)

ℓ = 0 Given (e(0), µ(0)) ∈ L2(Ω)N × L2(Ω)N (e(0) = µ(0) = dn−1)

ℓ ≥ 0 Compute successively d(ℓ+1), e(ℓ+1) and µ(ℓ+1) as follows

1. Compute d(ℓ+1) ∈ (H1
ln)

N such that

a2(d
(ℓ+1), d̄) + r(d(ℓ+1), d̄) = τ2(d̄) + (re(ℓ) − µ(ℓ), d̄), ∀ d̄ ∈ (H1

0 )
N . (37)

2. Compute the auxiliary unknown

e(ℓ+1) =
rd(ℓ+1) + µ(ℓ)

|rd(ℓ+1) + µ(ℓ)| .

3. Update the multiplier

µ(ℓ+1) = µ(ℓ) + r(d(ℓ+1) − e(ℓ+1)).

4. We iterate until
‖d(ℓ+1) − d(ℓ)‖L2(Ω)

‖d(ℓ+1)‖L2(Ω)

≤ ε.

6 Numerical experiments

We assume that Ω is a 2D polygonal domain which can be entirely triangulated by a family

Th furnished by a bigger family T2h dividing each triangle of T2h into four triangles by
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means of the edge-midpoints. Finite element spaces for (ũh, d̃h), (uh, ph, wh) and (dh, eh, µh)

are chosen as in Figure 1, where all approximations are over Th except for pressure which

is approximated in T2h (this approximation for the velocity/pressure is called P1-iso-P2/P1

which is known to satisfy the Babuska-Brezzi inf-sup condition [8]).

❆
❆
❆

❆
❆

❆
❆

❆
❆

❆
❆❆✁

✁
✁
✁

✁
✁

✁
✁

✁
✁

✁✁ ❆
❆

❆
❆

❆
❆

✁
✁
✁
✁
✁
✁

s❢ s❢

s❢

s

s

s wh

❢ ph
s uh, dh

Figure 1: Finite element spaces

All numerical results were carried out using uniform meshes of the square Ω = (0, 1)2

and vectorized Matlab codes [13]. As linear solver, we use the generalized minimum residual

method (gmres) for the non symmetric systems of Algorithm 1 and the preconditioned

conjugate gradient method (pcg) for symmetric (positive definite) systems (i.e. all linear

systems in Algorithms 2 and 3). The preconditioner matrices are obtained by incomplete

factorizations.

6.1 Test case with exact stationary solution

We present, in this subsection, computations on a test case with known solution, proposed by

Prohl [17]. Contrary to [17], now all numerical simulations are carried out without removing

the convection term in Equation (1). The constants λ, ν and γ are set to unity, and we adjust

right-hand sides in (1)-(3) and (5) such that the folowing functions be an exact solution:

u =

(
x2(1− x)2(2y − 6y2 + 4y3)

−y2(1− y)2(2x− 6x2 + 4x3)

)
, (38)

p = x2 − 1

3
, (39)

d =




1

2
x

(1− 1

4
x2)1/2


 . (40)

The exact solution (38)-(40) is approximated as a stationary solution of the corresponding

evolution problem, using the time-stepping scheme (7)-(8), (9)-(10), with initialization equal

to zero. We assume that a stationary solution is reached if the relative L2(Ω)-error for
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(uh, ph, dh) is less than 10−8. The time step is taken as k = 0.001. Tolerance parameter ε

for the iterative algorithms (Algorithm 1, Algorithm 2 and Algorithm 3) is set to ε = 10−6.
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Figure 2: Average number of iterations in Algorithm 3 versus the augmentation parameter

r.

The augmented Lagrangian Algorithm 3 is very sensitive to the choice of the augmenta-

tion parameter r. In our simulations, we assume that

r = α
h

k
, (41)

where h is the mesh size and k the time step. We make this (empirical) choice to make

the augmentation parameter independent from the mesh size. Figure 2 shows the average

number of iterations in Algorithm 3 (required to reach the stationary state) versus the

augmentation parameter r, using the mesh size h = 1/16. We can notice that the average

number of iterations in Algorithm 3 is large for small values of r (r < 100, i.e. α < 15). For

sufficiently large values of r (α > 400), the average number of iterations in Algorithm 3 is

between 5 and 6. Note that large values of r can lead to numerical instabilities (zero pivots

can appear during complete or incomplete factorizations). Table 1 shows that, with (41) for

α = 500, the average number of iterations in Algorithm 3 is virtually independent from the

mesh size.

Mesh size h 1/8 1/16 1/32 1/64 1/128

Number of iterations 5 5 5 6 6

Table 1: Average number of iterations in Algorithm 3 for various mesh sizes, with r = 500 h/k

To reduce the number of unnecessary iterations in Algorithm 3, we have computed the min

and max values for |dh| using several values of the tolerance ε. The results are summarized in

12



Tolerance ε in Algorithm 3 10−2 10−3 10−4 10−5 10−6

min |dh| 0.999987 0.999987 0.999999 0.999999 0.999999

max |dh| 1.000402 1.000402 1.000000 1.000000 1.000000

Table 2: Min and max values for |dh| with repect to ε in Algorithm 3, h = 1/32.

Table 2. We can notice that we do not need high accuracy in Algorithm 3. Indeed, according

to the mesh size, the norm of the director field can be considered as satisfactory as soon as

ε = 10−2.

Table 3 displays the L2(Ω) and H1(Ω)-errors for (uh, ph, dh), which confirms numerically

the convergence of the proposed scheme with respect to the mesh size h.

h ‖dh − d‖L2 ‖dh − d‖H1 ‖uh − u‖L2 ‖uh − u‖H1 ‖ph − p‖L2

1/8 6.0709× 10−4 7.8064× 10−3 9.4204× 10−4 1.4222× 10−2 7.9048× 10−3

1/16 2.3554× 10−4 3.8769× 10−3 2.4905× 10−4 7.0873× 10−3 2.4985× 10−3

1/32 9.8581× 10−5 1.9395× 10−3 6.2446× 10−5 3.5321× 10−3 8.7538× 10−4

1/64 4.5747× 10−5 9.6495× 10−4 1.5677× 10−5 1.7533× 10−3 3.4502× 10−4

1/128 1.6159× 10−5 4.7330× 10−4 4.0809× 10−6 8.8102× 10−4 1.1856× 10−4

Table 3: L2(Ω) and H1(Ω)-errors towards the stationary solution (38)-(40)

6.2 Test case with exact time-dependent solution

Again, the constants λ, ν and γ are set to unity and we adjust right-hand sides in (1)-(3)

and (5)-(6) such that the exact solution is (cf. Prohl [17]):

u = (1 + t3)

(
x2(1− x)2(2y − 6y2 + 4y3)

−y2(1− y)2(2x− 6x2 + 4x3)

)
,

d =


 tx

(1− t2x2)1/2


 ,

p = t(x2 − 1

3
).

Tolerance parameter ε for the iterative algorithms (Algorithm 1, Algorithm 2 and Algo-

rithm 3) are set to ε = 10−6. As in the previous Section, we take the penalty parameter

in Algorithm 3 as r = αh/k. Figure 3 shows the average number of iterations in Algo-

rithm 3 versus the augmentation parameter r for h = 1/16 and two time steps: k = 1/10

and k = 1/160. One can notice that for k = 1/10, the number of iterations in Algorithm 3
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is lower than 10 if α > 3 × 104. In contrast, for k = 1/160, the number of iterations in

Algorithm 3 is about 5-6 if α > 50. We can conclude that if the time step is not small

enough, α must be chosen large. This property is illustrated in Table 4. For k = 1/160,

the number of iterations is virtually independent of the mesh size while it is decreasing with

respect to the mesh size for k = 1/10.
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Figure 3: Average number of iterations in Algorithm 3 versus the augmentation parameter

r, for k = 1/10 (discontinuous line) and k = 1/160 (continuous line), and h = 1/16.

h 1/8 1/16 1/32 1/64 1/128

Iterations for k = 1/10 37 32 18 13 12

Iterations for k = 1/160 4 5 5 5 5

Table 4: Average number of iterations in Algorithm 3 for k = 1/10 and k = 1/160, with

r = 3000 h/k

Table 5 displays the L2(Ω) and H1(Ω)-errors at t = 0.5 for uh, ph and dh and confirms

numerically the convergence of the proposed scheme with respect to the time step k. We

notice that the approximation of the pressure is better in the stationary problem than in the

evolution case.

6.3 Liquid crystals on a square slab

We consider a test problem, derived from [5], with Ω = (0, 1)2, f = 0, (γ, ν, λ) = (1, 1, 10−6)

and the Dirichlet boundary conditions u = 0 and d = (cos(pθ), sin(pθ)), where p is an integer,

cos θ = (x− 1/2)/r, sin θ = (y − 1/2)/r and r = ((x − 1/2)2 + (y − 1/2)2)1/2 for any (x, y)

on the boundary. In fact, integer p is the number of cycles given by the director boundary
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ℓ ‖dh − d‖L2 ‖dh − d‖H1 ‖uh − u‖L2 ‖uh − u‖H1 ‖ph − p‖L2

1 2.9303× 10−4 2.2657× 10−3 1.4089× 10−5 5.0818× 10−4 8.5832× 10−2

2 1.9684× 10−4 1.4923× 10−3 6.4825× 10−6 4.9937× 10−4 8.4722× 10−2

3 1.2060× 10−4 9.2021× 10−4 2.5101× 10−6 4.9715× 10−4 8.4157× 10−2

4 6.4724× 10−5 5.4118× 10−4 6.5534× 10−7 4.9670× 10−4 8.3880× 10−2

5 3.0190× 10−5 3.4011× 10−4 5.8558× 10−7 4.9661× 10−4 8.3746× 10−2

Table 5: L2(Ω) and H1(Ω)-errors at t = 0.5 and time-steps k = 0.1× 21−ℓ (h = 1/256)

data. The initial values u0 and d0 have the same formulas except that (x, y) is taken in the

whole domain Ω.

Figure 4: Director field on a square liquid

crystal slab for p = 1, tstat = 0.143.

Figure 5: Director field on a square liquid

crystal slab for p = 2, tstat = 0.229.

The time step is k = 0.001, the mesh size is h = 1/32 and, after some tests, we take

the augmentation parameter as r = 320 h/k. In order to reduce the number of unnecessary

iterations in Algorithm 3, we choose the tolerance in the augmented Lagrangian Algorithm 3

as ε = 10−4. In the other iterative algorithms the tolerance is ε = 10−6. We assume that

a stationary solution is reached if the L2(Ω)-error for (uh, dh, ph) is less than 10−5 and the

corresponding time is denoted by tstat.

Figures 4-7 depict the reached stationary director fields. Note that for p = 1, 2, 3 and 4,

then one, two, three and four singularities are obtained, respectively. We have also computed

the stationary director fields for p = 5, 6, 7 and 8. As was pointed out in [5], it seems hard

to predict the number of point singularities for p ≥ 7. Notice that, our results for p > 1
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Figure 6: Director field on a square liquid

crystal slab for p = 3, tstat = 0.253.

Figure 7: Director field on a square liquid

crystal slab for p = 4, tstat = 0.609.

are rather different from those of [5] from a qualitative point of view, because pictures of

director vector given in [5] and in Figures 4-7 are different, and also from a quantitative

one, because for instance for p = 2 we obtain 2 point-singularities while 3 point-singularities

are reached in [5]. Nevertheless, the computations of this paper are not fully comparable

to those obtained in [5] where a liquid crystal model involving only the director vector is

considered, while our results are obtained for a coupled fluid/director field model.

Finally, Table 6 shows the average number of iterations in Algorithm 3 versus p.

p 1 2 3 4 5 6 7 8

Iterations 9 13 16 20 22 19 17 21

Table 6: Average number of iterations in Algorithm 3 versus p, with r = 320 h/k.

Conclusion

We have designed a fully splitting and decoupled in time linear algorithm for nematic liquid

crystal flows with explicit treatment of the unitary constraint for the director field by an

augmented Lagrangian technique. This algorithm allows us to use only P1 finite elements in

space, choosing the stable pair P1-iso P2/P1 for the velocity-pressure approximation.

We study the numerical behavior of the scheme, observing that the fixed-point iterative

procedure (19)-(20) works well, because the convergence criterion (21) is satisfied after few

(≈ 4 − 5) iterations. Moreover, since the augmented Lagrangian Algorithm 3 is sensitive
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with respect to the augmentation parameter r, we propose an empirical rule for choosing this

parameter depending on the quotient of mesh size over time step. Nevertheless, how to make

an automatic choice of the optimal value of this augmentation parameter in Algorithm 3 is

still an open question.
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