Inner approximations of the maximal positively invariant set for polynomial dynamical systems - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Inner approximations of the maximal positively invariant set for polynomial dynamical systems

Résumé

The Lasserre or moment-sum-of-square hierarchy of linear matrix inequality relaxations is used to compute inner approximations of the maximal positively invariant set for continuous-time dynamical systems with polynomial vector fields. Convergence in volume of the hierarchy is proved under a technical growth condition on the average exit time of trajectories. Our contribution is to deal with inner approximations in infinite time, while former work with volume convergence guarantees proposed either outer approximations of the maximal positively invariant set or inner approximations of the region of attraction in finite time.
Fichier principal
Vignette du fichier
innermpi.pdf (152.82 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02064440 , version 1 (11-03-2019)
hal-02064440 , version 2 (13-03-2019)
hal-02064440 , version 3 (07-05-2019)

Identifiants

Citer

Antoine Oustry, Matteo Tacchi, Didier Henrion. Inner approximations of the maximal positively invariant set for polynomial dynamical systems. 2019. ⟨hal-02064440v1⟩
237 Consultations
247 Téléchargements

Altmetric

Partager

More