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Abstract

The Lasserre or moment-sum-of-square hierarchy of linear matrix in-

equality relaxations is used to compute inner approximations of the maximal

positively invariant set for continuous-time dynamical systems with polyno-

mial vector fields. Convergence in volume of the hierarchy is proved under a

technical growth condition on the average exit time of trajectories. Our con-

tribution is to deal with inner approximations in infinite time, while former

work with volume convergence guarantees proposed either outer approxi-

mations of the maximal positively invariant set or inner approximations of

the region of attraction in finite time.

1 Introduction

This paper is an effort along a research line initiated in [5] for developing convex

optimization techniques to approximate sets relevant to non-linear control systems

subject to non-linear constraints, with rigorous proofs of convergence in volume.
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The approximations are obtained by solving numerically a hierarchy of semidefi-

nite programming or linear matrix inequality (LMI) relaxations, as proposed orig-

inally by Lasserre in the context of polynomial optimization [8]. Convergence

proofs are achieved by exploiting duality between non-negative continuous func-

tions and Borel measures, approximated respectively with sums of squares (SOS)

of polynomials and moments, justifying the terminology moment-sum-of-square

or Lasserre hierarchy. In the context of control systems, the primal moment for-

mulation builds upon the notion of occupation measures [9] and the dual SOS

formulation can be classified under Hamilton-Jacobi techniques [1].

Previous works along this line include inner approximations of the region of

attraction [6], outer approximations of the maximal positively invariant (MPI) set

[7], as well as outer approximations of the reachability set [3]. These techniques

were applied e.g. in robotics [10] and biological systems [13]. In [5,6] the regions

of attraction are defined for a finite time horizon, which is a technical convenient

framework since the occupation measures have then finite mass. To cope with

an infinite time horizon and MPI sets, a discount factor was added in [7] so that

the mass of the occupation measure decreases fast enough when time increases.

In [3], the mass was controlled by enforcing a growth condition on the volume

of complement sets. This condition, difficult to check a priori, can be validated a

posteriori using duality theory.

It must be emphasized here that, in general, the infinite time hoziron setup is

more convenient for the classical Lyapunov framework and asymptotic stability,

see e.g. [2] and references therein, whereas the finite time horizon setup is more

convenient for approaches based on occupation measures. In the current paper,

we make efforts to adapt the occupation measure framework to an infinite time

horizon setup, at the price of technical difficulties similar to the ones already en-

countered in [3]. Contrary to the outer approximations derived in [7], we have not

been able to use discounted occupation measures for constructing inner approxi-

mations. Instead, the technical device on which we relied is a growth condition of

the average exit time of trajectories.

The main contributions of this work are:

1. A hierarchy for constructing inner approximations of the MPI set for a poly-

nomial dynamic system with semialgebraic constraints;

2. A rigorous proof of convergence of the hierarchy, under an assumption on

the average exit time of trajectories.

Section 2 presents the problem statement. Section 3 describes the MPI set

inner approximation method. Section 4 includes the proof of convergence with

appropriate assumptions. Numerical results are analyzed in Section 5. Conclusion

and future work are discussed in Section 6.



2 Problem statement

Consider the autonomous system

ẋ(t) = f (x),x ∈ X ⊂ R
n, t ∈ [0,+∞[ (1)

with a given polynomial vector field f of total degree δ0. The state trajectory x(.)
is constrained to the interior int(X) of a nonempty compact basic semi-algebraic

set

X := {x ∈ R
n,gi(x)≥ 0, i = 1, ...,nX}

where the gi are polynomials of degree δi. Let ∂X := X \ int(X) denote the bound-

ary of X .

The vector field f is polynomial and therefore Lipschitz on the compact set X .

As a result, for any x0 ∈ int(X), there exists a unique maximal solution x(.|x0) to

ordinary differential equation (1) with initial condition x(0|x0) = x0. The time

interval on which this solution is defined contains the time interval on which

x(.|x0) ∈ int(X).
For any t ∈ R+∪{+∞}, we define the following set:

Xt := {x0 ∈ int(X) : ∀s ∈ [0, t],x(s|x0) ∈ int(X)}.

With this notation, X∞ is the set of all initial states generating trajectories staying

in int(X) ad infinitum: X∞ is the MPI set included in int(X). Indeed, for any

x0 ∈ X∞ and t ≥ 0, by definition, x(t|x0) ∈ X∞.

The complementary set X c
t := int(X)\Xt is the set of initial conditions gener-

ating trajectories reaching the target set ∂X at any time before t: this is the region

of attraction of ∂X with free final time lower than t. The complementary set X c
∞ is

the region of attraction of ∂X with free and unbounded final time.

In this paper we want to approximate the MPI set X∞ from inside as closely as

possible.

3 Inner approximations of the MPI set

This section presents an infinite dimensional linear programming problem (LP)

and a hierarchy of convex linear matrix inequality (LMI) relaxations yielding in-

ner approximations of the MPI set.



3.1 Infinite dimensional LP

Consider the following infinite dimensional LP

d = inf µ0(X)
s.t. ∇v · f (x)≤ 0, ∀x ∈ X

w(x) ≥ v(x)+1,∀x ∈ X

w(x) ≥ 0,∀x ∈ X

v(x) ≥ 0,∀x ∈ ∂X

(2)

where the infimum is with respect to v ∈C1(X) and w ∈C0(X). It is worth noting

that the constraint ∇v · f (x)≤ 0 is similar to the one of Lyapunov theory. However,

it is here used in a completely different way, since v is not required to be positive

outside ∂X .

Theorem 1 Let (v,w) be a feasible pair for problem (2). Then, the set X̂∞ := {x ∈
int(X) : v(x)< 0} is a positively invariant subset of X∞.

Proof: Since X∞ is the MPI set included in X and X̂∞ ⊂ X by definition, it is

sufficient to prove that X̂∞ is positively invariant.

Let x0 ∈ X̂∞. Then, for any t > 0, it holds v(x(t|x0))= v(x0)+
∫ t

0
d
dt
(v(x(s|x0)))ds=

v(x0) +
∫ t

0 ∇v · f (x(s|x0))ds ≤ v(x0) < 0 using the Lyapunov-like constraint in

problem (2).

We still have to show that x(t|x0) remains in int(X) at all times t ≥ 0. If not,

then there exists t > 0 such that x(t|x0) ∈ ∂X according to the intermediate value

theorem, the trajectory being of course continuous in time. However, by feasibility

of (v,w), one then has v(x(t|x0)) ≥ 0, which is in contradiction with the fact that

v(x(t|x0))< 0 for all t > 0 which we just proved.

Thus, we obtain that for all t > 0, x(t|x0) ∈ int(X) and v(x(t|x0)) < 0, i.e.

x(t|x0) ∈ X̂∞. �.

This shows that the set X̂∞ is an inner approximation of X∞.

Remark 1 The decision variable w as well as the cost
∫

X w(x) dλ (x) are intro-

duced, as in [5], to maximize the volume of the computed X̂∞. It can be compared

to the so-called “outer iterations” of the expanding interior algorithm presented

in [11].

3.2 SDP tightening

In what follows, Rk[x] denotes the vector space of real multivariate polynomials of

total degree less than or equal to k, and Σk[x] denotes the cone of sums of squares

(SOS) of polynomials of degree less than or equal to k.



For i = 0, . . . ,nX let ki := ⌈δi/2⌉. Let kmin := max
i=0,...,nX

ki and k ≥ kmin. The

infinite dimensional LP (2) has an SOS tightening that can be written

dk = inf w′l

s.t. −∇v · f = q0 +∑i qi gi

w− v−1 = p0 +∑i pi gi

w = s0 +∑i si gi

v = t0+∑i t
+
i gi −∑i t

−
i gi

(3)

where the infimum is with respect to v ∈ R2k[x], w ∈ R2k[x], qi, pi,si, t
+
i , t−i ∈

Σ2(k−ki)[x], i = 1, . . . ,nX , and q0, p0,s0, t0 SOS polynomials with appropriate de-

gree. Vector l denotes the Lebesgue moments over X indexed in the same basis in

which the polynomial w(x) with vector of coefficients w is expressed.

SOS problem (3) is a tightening of problem (2) in the sense that any feasible

solution in (3) gives a pair (v,w) feasible in (2).

Theorem 2 Problem (3) is an LMI problem and any feasible solution gives an

inner approximation X̂ k
∞ := {x ∈ int(X),v(x)< 0} of the MPI set.

Proof: For the equivalence between SOS and LMI, see e.g. [8] and references

therein. The inner approximation result is a direct consequence of Theorem 1. �.

4 Convergence of the inner approximations

Besides providing a convex formulation to the problem of inner approximation of

the MPI set X∞, the Lasserre hierarchy framework allows to prove the convergence

of our approximations X̂ k
∞ to the actual X∞ in the sense of the Lebesgue measure,

which has not been done so far in the Lyapunov framework.

However, due to the infinite time horizon, such a strong result is available

only under some assumptions. It is based on the primal formulation of the MPI

set computation problem.

For a given x0 ∈ X c
∞, we define the exit time as

τ(x0) := inf{t ≥ 0 : x(t|x0) /∈ int(X)}.

In the rest of this paper we make the assumption that the average exit time of

trajectories leaving int(X) is finite:

Assumption 1 τ := 1
λ (X)

∫

Xc
∞

τ(x)dx <+∞.



4.1 Primal LP

For a given T ∈ R+, we define the following infinite-dimensional LP

pT = sup µ0(X)
s.t. div( f µ)+µ∂ = µ0

µ0 + µ̂0 = λ
µ(X)≤ T λ (X)

(4)

where the supremum is with respect to measures µ0 ∈ M+(X), µ̂0 ∈ M+(X),
µ∂ ∈M+(∂X) and µ ∈M+(X) with M+(A) denoting the cone of non-negative

Borel measures supported on the set A. The symbol λ denotes the n-dimensional

Lebesgue measure on X .

Remark 2 Here, T is introduced to ensure that all the feasible measures have

a finite norm in total variation |µ| := µ(X)<+∞. Otherwise, the optimization

problem would be ill-posed.

The two following lemmas link the infinite-dimensional LP (4) and the MPI

set X∞.

Lemma 3 Assuming that T ≥ τ , we have pT ≥ λ (X c
∞).

Proof: The quadruplet (µ0 := λXc
∞
, µ̂0 := λX∞,µ :=A 7→

∫

Xc
∞

∫ τ(x0)
0 1A(x(t|x0)) dt dx0,µ∂ :=

A 7→
∫

Xc
∞
1A(x(τ(x0)|x0))dx0) is feasible. Indeed, one has:µ(X) =

∫

Xc
∞

∫ τ(x0)
0 dx0 =

τ λ (X)≤ T λ (X), µ0+ µ̂0 = λ , and the first constraint in (4) is satisfied, since ∀v∈

C1(X) it holds 〈div( f µ),v〉= 〈µ,−∇v· f 〉=−
∫

Xc
∞

∫ τ(x0)
0 ∇v(x(t|x0)) · f (x(t|x0))dtdx0 =

−
∫

Xc
∞

(

∫ τ(x0)
0

d
dt
(v(x(t|x0)))dt

)

dx0 = −
∫

Xc
∞
(v(x(τ(x0)|x0))− v(x0))dx0 = 〈µ0 −

µ∂ ,v〉 where the braces 〈,〉 denote integration. Then pT ≥ µ0(X) = λXc
∞
(X) =

λ (X c
∞). �.

Lemma 4 For any quadruplet (µ0, µ̂0,µ,µ∂ ) feasible in (4), µ0 is supported on

X c
∞, i.e. µ0(X∞) = 0.

The proof of this lemma uses the following assumption on the MPI set:

Assumption 2 For all x ∈ X∞∩∂X it holds f (x) ·n(x)< 0, where n(x) stands for

the unit normal vector to ∂X pointing towards R
n \X.



In words, Assumption 2 means that at all points where X∞ is tangent to X , the

trajectories strictly enter X . Up to the choice of X , this seems to be reasonable for

any physical system.

Proof: Let (µ0, µ̂0,µ,µ∂ ) be a feasible quadruplet for (4). Let ν := div( f µ) =
µ0 −µ∂ ∈ M (X). For x ∈ R

n, let

ϕ(x) :=

{

K exp
(

− 1
1−|x|2

)

if |x|< 1

0 else

where K > 0 is such that
∫

ϕ dλ = 1. Then, for ε > 0 and x ∈ R
n, let

• ϕε(x) := 1
ε ϕ

(

x
ε

)

≥ 0,

• µε(x) :=
∫

X
ϕε(y− x) dµ(y)≥ 0,

• νε(x) := div( f µε)(x).

According to the theory of mollifiers, ϕ , ϕε , µε and νε are smooth compactly

supported functions, and for any w ∈C0(Rn) compactly supported,

∫

Rn
w(x)µε(x) dx −→

ε→0

∫

X
w(x) dµ(x)

from which it directly follows that for v ∈ C1(Rn) compactly supported, it holds
∫

Rn v(x)νε(x) dx=
∫

Rn v(x)div( f µε)(x) dx=−
∫

Rn ∇v(x) · f (x)µε(x) dx−→
ε→0

−
∫

Rn ∇v(x) ·

f (x) dµ(x) =
∫

Rn v(x) dν(x). By uniform density of C1
c (R

n) in C0
c (R), this implies

that νελ weakly converges (in the sense of measures) to ν .

Then, let δ > 0. We consider the set Xδ :=

{

x ∈ X∞, inf
y∈∂X

|x− y|> δ

}

. By

definition, Xδ ∩∂X = /0, and then for any Borel set A ⊂ Xδ , one has ν(A) = µ0(A).
In particular, ν(∂Xδ ) = µ0(∂Xδ ) = 0 since µ0 ≤ λ . Then, we can apply the Port-

manteau lemma (equality marked with a ∗) to ν(Xδ ), we get µ0(Xδ ) = ν(Xδ )
∗
=

lim
ε→0

∫

Xδ
νε(x) dx

def
= lim

ε→0

∫

Xδ
div( f µε)(x) dx = lim

ε→0

∫

∂Xδ
f (x) ·nδ (x)µε(x) dx where

nδ stands for the unit normal vector to ∂Xδ pointing towards X c
δ , according to

Stokes’ theorem. Now, let ∆ be the function

∂X∞ ∩∂X −→ R+

x 7−→ sup

{

∆ > 0,∀δ ∈ (0,∆),∀y ∈ ∂Xδ

|x− y|< ∆ =⇒ f (y) ·nδ (y)≤ 0

}

.

In words, ∆(x) is the largest range around x within which f · nδ is non-positive.

According to Assumption 2, f being continuous, ∆ takes only positive values.



Moreover, due to the regularity of f , X and X∞, ∆ is continuous on the compact

set ∂X∞ ∩∂X , therefore it attains a minimum ∆∗ > 0.

Let δ ∈ (0,∆∗), x ∈ ∂Xδ . Then, there are two possibilities:

• either x ∈ ∂X∞, and then by positive invariance of X∞, f (x) ·nδ (x)≤ 0;

• or inf
y∈∂X

|x− y|= δ < ∆∗, and by definition of ∆∗, f (x) ·nδ (x)≤ 0.

It follows that for any x ∈ ∂Xδ , f (x) · n(x) ≤ 0. Thus, one obtains
∫

∂Xδ
f (x) ·

nδ (x)µε(x) dx≤ 0 and after letting ε tend to 0, we have µ0(Xδ )≤ 0, which means,

by non-negativity of µ0, that µ0(Xδ ) = 0.

Eventually, we note that constraint µ0 ≤ λ ensures that the function δ 7−→
µ0(Xδ ) is continuous, which leads to the conclusion that µ0(X∞) = lim

δ→0
µ0(Xδ ) =

0.
�.

Theorem 5 Assuming that T ≥ τ , the infinite-dimensional LP (4) has value pT =
λ (X c

∞). Moreover the supremum is attained, and the µ0 component of any solution

is necessarily the measure λXc
∞
.

Proof: This is a straightforward consequence of Lemmas 3 and 4. �.

4.2 Dual LP

For a given T ∈ R+, the dual LP of (4) reads

dT = inf

∫

X
(w(x)+u T ) dλ (x)

s.t. ∇v · f (x)≤ u, ∀x ∈ X

w(x) ≥ v(x)+1,∀x ∈ X

w(x) ≥ 0,∀x ∈ X

v(x)≥ 0,∀x ∈ ∂X

(5)

where the infimum is with respect to u ≥ 0, v ∈C1(X) and w ∈C0(X).

Remark 3 Problem (5) is very similar to the initial problem (2), but with an ad-

ditional slack variable u related to the constraint µ(X) ≤ T λ (X) in the primal

(4). For u = 0, (2) and (5) are equivalent. Otherwise, there is no guarantee that

the solution of (5) yields an inner approximation of X∞. We will see that under

Assumption 1, u = 0 can always be enforced.

Lemma 6 For any triplet (u,v,w) feasible in (5) and for any t > 0, it holds {x0 ∈
int(X),v(x0)+ ut < 0} ⊂ Xt . In particular, if (0,v,w) is feasible in (5), then the

set {x0 ∈ int(X),v(x0)< 0} is included in X∞ and it is positively invariant.



Proof: Let (u,v,w) be a feasible triplet in (5) and let x0 be a element of X c
t for

a given t > 0.

By definition of Xt we know that t ≥ τ(x0), where τ is the exit time, and that

for any s ∈ [0,τ(x0)],x(s|x0) ∈ X . Thanks to the first constraint in (5), we can

therefore say that for any s ∈ [0,τ(x0)],(∇v · f )(x(s|x0))≤ u. This can be written

as:

∀s ∈ [0,τ(x0)],
d(v(x(s′|x0))

ds′ |s′=s
≤ u.

Hence for any s ∈ [0,τ(x0)],v(x(s|x0))≤ v(x0)+us. In particular, we deduce that

v(x(τ(x0)|x0))≤ v(x0)+uτ(x0)≤ v(x0)+ut.

As x(τ(x0)|x0)∈ ∂X , we know that v(x(τ(x0)|x0))≥ 0 and thus v(x0)≥−ut. This

proves that

X c
t ⊂ {x0 ∈ int(X),v(x0)≥−ut}

hence

{x0 ∈ int(X),v(x0)+ut < 0} ⊂ Xt.

Let us suppose now that (0,v,w) is a feasible triplet in (5). Let x0 be an element

of X such that v(x0) < 0. Applying the first result with u = 0, we know that for

all t > 0, x0 ∈ Xt thus x0 ∈ X∞. This proves that {x0 ∈ int(X),v(x0) < 0} ⊂ X∞,

from which we deduce the positive invariance of this set using the property that v

decreases along trajectories staying in X . �.

Theorem 7 There is no duality gap between primal LP problem (4) on measures

and dual LP problem (5) on functions, i.e. pT = dT .

Proof: Here we only outline the basic steps; for a detailed argument in a

similar setting see [5, Theorem 2]. The feasible set of (4) is non-empty since

it contains the trivial solution (µ0, µ̂0,µ,µ∂ ) = (0,λ ,0,0). Moreover, for any

feasible quadruplet (µ0, µ̂0,µ,µ∂ ), we have that µ0(X)= µ∂ (X)≤ λ (X), µ̂0(X)≤
λ (X) and µ(X)≤ T λ (X). Therefore 0 ≤ pT < ∞ and the feasible set is weakly-*

bounded. The absence of a duality gap then follows from Alaoglu’s theorem and

the weak-* continuity of the operator (µ0, µ̂0,µ,µ∂ )→ (div( f µ)+µ∂ −µ0,µ0 +
µ̂0). �.

4.3 LMI relaxations

Throughout the rest of this section we make the following standard standing as-

sumption:

Assumption 3 One of the polynomials modeling the set X is equal to gi(x) =
R2 −|x|2.



This assumption is without loss of generality since a redundant ball constraint

can be always added to the description of the bounded set X .

The primal LMI or moment relaxation of order k reads

pT
k = sup (y0)0

s.t. Ak(y,y0, ŷ0,y∂ ) = bk

(y)0 ≤ T λ (X)
Mk(y)� 0,Mk−ki

(gi,y)� 0, i = 1,2, . . . ,nX

Mk(y0)� 0,Mk−ki
(gi,y0)� 0, i = 1,2, . . . ,nX

Mk(ŷ0)� 0,Mk−ki
(gi, ŷ0)� 0, i = 1,2, . . . ,nX

Mk(y∂ )� 0, i = 1,2, . . . ,nX

Mk−ki
(gi,y∂ )� 0, i = 1,2, . . . ,nX

Mk−ki
(−gi,y∂ )� 0, i = 1,2, . . . ,nX

(6)

where the notation � 0 stands for positive semi-definite and the minimum is over

moments sequences (y0, ŷ0,y,y∂ ) truncated to degree 2k corresponding to mea-

sures (µ0, µ̂0,µ,µ∂ ). The LMI constraints involve moment and localizing matri-

ces not described here for the sake of brevity, see e.g. [5] in a similar context, or

the comprehensive monograph [8]. The linear equality constraint captures the two

linear equality constraints of (4) with v ∈ R2k[x] and w ∈ R2k[x] being monomials

of total degree less than or equal to 2k.

The dual LMI problem of (6) can be formulmated as an SOS problem

dT
k = inf w′l+u T l0

s.t. u−∇v · f = q0 +∑i qi gi

w− v−1 = p0 +∑i pi gi

w = s0 +∑i si gi

v = t0+∑i t
+
i gi −∑i t

−
i gi

(7)

where the infimum is with respect to u ≥ 0 and the same decision variables as in

problem (3).

SOS problem (7) is a tightening of problem (5) in the sense that any feasible

solution in (7) gives a triplet (u,v,w) feasible in (5).

Lemma 8 Let T ≥ 0 and k ≥ kmin. Then,

1. pT
k = dT

k i.e. there is no duality gap between the primal LMI (6) and the

dual LMI (7).

2. The optimum of primal LMI (6) is attained.

3. For any t > 0 and for any feasible solution (uk,vk,wk) of dual LMI (7), it

holds

X̂ k
t := {x ∈ int(X),vk(x)+uk t < 0} ⊂ Xt.



In particular, if uk = 0, we have then

X̂ k
∞ := {x ∈ int(X),vk(x)< 0} ⊂ X∞

.

Proof:

1. Follows by the same arguments based on standard semidefinite program-

ming duality theory as the proof of [5, Theorem 4]. The main argument is

the non-emptiness and compactness of the feasible set of the primal prob-

lem. It is non-empty since the zero moment vector is feasible. Boundedness

of the even components of each moment vector follows from the structure of

the localizing matrices corresponding to the functions from Assumption 3

and from the fact that the masses (zero order moments) of the measures are

bounded. Boundedness of the whole moment vectors then follows since the

even moments appear on the diagonal of the positive semidefinite moment

matrices.

2. The second point derives also from the non-emptiness and compactness of

the feasible set of the primal problem.

3. This is a straightforward consequence of Lemma 6.

�.

Theorem 9 Let T > τ . Then,

1. The sequences (pT
k ) and (dT

k ) are monotonically decreasing and converging

to λ (X c
∞).

For every k ≥ kmin, let (uk,vk,wk) denote a 1
k
-optimal solution of the dual tighten-

ing of order k. One has then :

2. uk −→
k→∞

0

3. wk
L1(X)
−→
k→∞

1Xc
∞
.

Proof:

1. The proof of this point follow exactly the same principle as the proof of

[5, Theorem 5], therefore we detail only the main ideas. Using Stone-

Weierstrass, one can prove that there exists a minimizing sequence of (5)

where the w and v components are polynomials. This step exploits the fact

that the variable u is free and is not constrained to be zero. One can conclude

using the classical Positivstellensatz by Putinar, as in e.g. [8].



2. We define the quadruplet (µ0, µ̂0,µ,µ∂ ) as follows:

– µ0 := λXc
∞
, µ̂0 := λX∞ ,

– µ := A 7→
∫

Xc
∞

∫ τ(x0)
0 1A(x(t|x0)) dt dx0,

– µ∂ =: A 7→
∫

Xc
∞
1A(x(τ(x0)|x0))dx0.

Quadruplet (µ0, µ̂0,µ,µ∂ ) has already been proven to be an optimal solution

of (6). Using standard duality method, one can prove that :

< wk,λ >+ukT λ (X) ≥< wk,λ >+ukµ(X) ≥ µ0(X).

Since < wk,λ > +ukT λ (X)−→ dT = pT = µ0(X) we can deduce that for

any accumulation point u∗ of the sequence uk, we have u∗T λ (X)= u∗µ(X).
Since T λ (X)> µ(X) it proves that any accumulation point of the sequence

uk is zero. Noticing moreover that the sequence is included in the compact

interval [0,
pT

kmin

T λ (X) ], this proves that uk−→0.

3. Let ε > 0. Let t > 0 such that λ (Xt \X∞) ≤ ε . Let k̄ ≥ kmin such that for

all k ≥ k̄ one has that ‖ukt‖L1(X) ≤ ε and |
∫

X wkdλ −λ (X c
∞)| ≤ ε . Such an

integer exists from points 1 and 2. Using the triangular inequality and the

fact that ‖ukt‖L1(X) ≤ ε one has

‖wk −1Xc
∞
‖L1(X) ≤ ‖wk +ukt −1Xc

∞
‖L1(X)+ ε. (8)

With the notation ∆ = ‖wk +ukt −1Xc
∞
‖L1(X), one has that

∆ =
∫

Xc
t

|wk +ukt −1Xc
∞
|dλ +

∫

Xt

|wk +ukt −1Xc
∞
|dλ .

We denote ∆1 and ∆2 these two terms, respectively. Using that X c
t ⊂ X c

∞ and

that wk(x)+ukt ≥ 1+ vk(x)+ukt ≥ 1,∀x ∈ X c
t (from point 3 of Lemma 8)

we have then that

∆1 =
∫

Xc
t

wk +ukt −1dλ =
∫

Xc
t

wkdλ −λ (X c
t )+λ (X c

t )ukt

and since λ (X c
t )ukt ≤ ‖ukt‖L1(X) ≤ ε ,

∆1 ≤
∫

Xc
t

wkdλ −λ (X c
t )+ ε. (9)

Moreover, we have that

∆2 ≤

∫

Xt

|wk|+ |ukt|+ |1Xc
∞
|dλ



and therefore using that wk ≥ 0 and that ‖ukt‖L1(X) ≤ ε:

∆2 ≤
∫

Xt

wkdλ + ε +λ (Xt \X∞).

Since we have λ (Xt \X∞)≤ ε by choice of t, we deduce that ∆2 ≤
∫

Xt
wkdλ +

2ε . Combining this inequality with (9), we have :

∆ = ∆1 +∆2 ≤
∫

X
wkdλ −λ (X c

t )+3ε

from which we deduce that ∆ ≤ 5ε , using that |
∫

X wkdλ −λ (X c
∞)| ≤ ε and

λ (X c
∞ \X c

t ) ≤ ε . Combining this with (8), we have that ‖wk −1Xc
∞
‖L1(X) ≤

6ε .

�.

5 Numerical examples

For this paper, we chose to focus on the simple example of the Van der Pol oscil-

lator, as was done in [5]. Thus, we consider the two-dimensional ODE

ẋ1 =−2 x2 (10a)

ẋ2 = 0.8 x1 +10 (α2x2
1 −0.2) x2 (10b)

with α = 1.02. Let X = {x ∈ R
2,x2

1 + x2
2 ≤ 1} and T = 100

π .

We implemented the hierarchy of SOS problems (7) in Matlab using the tool-

box YALMIP interfaced with the SDP solver MOSEK. For the 6th and 7th tight-

enings (SOS degrees 12 and 14 respectively), we compared the obtained regions

to the outer approximations computed using the framework presented in [7], see

Figure 1.

Here the MPI set is tangent to the unit circle at some points; as a consequence,

the inner approximations are tangent to the unit circle and the outer approxima-

tions (which are identical for k = 6 and 7) exceed the unit disk. In this implemen-

tation, we checked at each relaxation whether u was near to zero: for k = 6, we

get u ∼ 10−7, and for k = 7 we get u ∼ 10−6, which is satisfactory. Moreover,

we compared our results with those obtained by applying the SOS tightenings (3)

of problem (2) (i.e. by forcing u = 0 in the hierarchy), and we obtained the same

inner approximations.

However, we observed some difficulties:
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Figure 1: Outer and inner approximations of the Van der Pol MPI set in the unit

disk.

• For low degrees, the only solution found by the solver is very close to the

zero polynomial: the coefficients are of the order 10−5, therefore the plots

are irrelevant; one loses conservativeness and several constraints are vio-

lated (namely the positivity constraint on v on ∂X ).

• For higher degrees, the basis of monomials is not adapted since xα is close

to the indicator of the unit circle. As a result, the coefficients are of the

order 105 or more, and again the plots make little sense.

One can also find numerical applications of this method to actual eletrical

engineering problems in [12] with very promising results.

6 CONCLUSIONS

The original motivation behind our current work is the study of transient phe-

nomena in large-scale electrical power systems, see [4] and references therein.

Our objective is to design a hierarchy of approximations of the MPI set for large-

scale systems described by non-linear differential equations. A first step towards

non-polynomial dynamics can be found in [12]. Since the initial work [5] re-

lied on the mathematical technology behind the approximation of the volume of

semi-algebraic sets, we already studied in [14] the problem of approximating the

volume of a large-scale sparse semi-algebraic set. We are now investigating ex-

tensions of the techniques for approximating the MPI set of large-scale sparse



dynamical systems, and the current paper contributes to a better understanding of

its inner approximations, in the small-scale non-sparse case. Our next step con-

sists of combining the ideas of [14] with those of the current paper, so as to design

a Lasserre hierarchy of inner approximations of the MPI set in the large-scale

case, and apply it to electrical power system models.
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