Kinematic Covariance Based Abnormal Gait Detection - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

Kinematic Covariance Based Abnormal Gait Detection

Cyrille Migniot
Albert Dipanda
  • Fonction : Auteur
  • PersonId : 913930
  • IdRef : 074529137

Résumé

This paper proposes an approach for automatic detection of abnormal human gait. We use an improved skeleton data covariance based gait assessment approach. Low-limbs flexion angles are derived using skeletons computed from data acquired by the Kinect sensor. Then for each gait sequence, we calculate a covariance matrix from the obtained angles data. The matrices are used as features for two classification schemes: a normal gait model-based and a k-NN-based. The resulting descriptor is compact, does not require prior temporal segmentation and shows competitive results on available pathological gait datasets.
Fichier principal
Vignette du fichier
article.pdf (364.19 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02064251 , version 1 (04-07-2023)

Identifiants

Citer

Margarita Khokhlova, Cyrille Migniot, Albert Dipanda. Kinematic Covariance Based Abnormal Gait Detection. 2018 14th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), 2018, -, France. ⟨10.1109/sitis.2018.00111⟩. ⟨hal-02064251⟩
51 Consultations
70 Téléchargements

Altmetric

Partager

More