Tips of Tongues in the Double Standard Family - Archive ouverte HAL
Article Dans Une Revue Nonlinearity Année : 2021

Tips of Tongues in the Double Standard Family

Kuntal Banerjee
Jordi Canela

Résumé

We answer a question raised by Misiurewicz and Rodrigues concerning the family of degree 2 circle maps $F_\lambda:\mathbb{R}/\mathbb{Z}\to \mathbb{R}/\mathbb{Z}$ defined by \[F_\lambda(x) := 2x + a+ \frac{b}{\pi} \sin(2\pi x){\quad\text{with}\quad} \lambda:=(a,b)\in \mathbb{R}/\mathbb{Z}\times (0,1).\] We prove that if $F_\lambda^{\circ n}-{\rm id}$ has a zero of multiplicity $3$ in $\mathbb{R}/\mathbb{Z}$, then there is a system of local coordinates $(\alpha,\beta):W\to \mathbb{R}^2$ defined in a neighborhood $W$ of $\lambda$, such that $\alpha(\lambda) =\beta(\lambda)=0$ and $F_\mu^{\circ n} - {\rm id}$ has a multiple zero with $\mu\in W$ if and only if $\beta^3(\mu) = \alpha^2(\mu)$. This shows that the tips of tongues are regular cusps.
Fichier principal
Vignette du fichier
1903.01795v1.pdf (446.19 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02058582 , version 1 (12-07-2024)

Identifiants

Citer

Kuntal Banerjee, Xavier Buff, Jordi Canela, Adam Epstein. Tips of Tongues in the Double Standard Family. Nonlinearity, 2021, 34 (12), pp.8174-8191. ⟨10.1088/1361-6544/ac2d80⟩. ⟨hal-02058582⟩
157 Consultations
16 Téléchargements

Altmetric

Partager

More