Robust Anomaly Detection on Unreliable Data - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Robust Anomaly Detection on Unreliable Data

Zilong Zhao
Robert Birke
  • Fonction : Auteur
  • PersonId : 993251
Bogdan Robu
Lydia Y. Chen
  • Fonction : Auteur
  • PersonId : 1032373

Résumé

Classification algorithms have been widely adopted to detect anomalies for various systems, e.g., IoT and cloud, under the common assumption that the data source is clean, i.e., features and labels are correctly set. However, data collected from the field can be unreliable due to careless annotations or malicious data transformation for incorrect anomaly detection. In this paper, we present a two-layer learning framework for robust anomaly detection (RAD) in the presence of unreliable anomaly labels. The first layer of quality model filters the suspicious data, where the second layer of classification model detects the anomaly types. We specifically focus on two use cases, (i) detecting 10classes of IoT attacks and (ii) predicting 4 classes of task failures of big data jobs. Our evaluation results show that RAD can robustly improve the accuracy of anomaly detection, to reach up to 98% for IoT device attacks (i.e., +11%) and up to 83% for cloud task failures (i.e., +20%), under a significant percentage of altered anomaly labels.
Fichier principal
Vignette du fichier
dsn2019.pdf (512.59 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02056558 , version 1 (06-03-2020)

Identifiants

Citer

Zilong Zhao, Sophie Cerf, Robert Birke, Bogdan Robu, Sara Bouchenak, et al.. Robust Anomaly Detection on Unreliable Data. DSN 2019 - 49th IEEE/IFIP International Conference on Dependable Systems and Networks, Jun 2019, Portland, Oregon, United States. ⟨10.1109/DSN.2019.00068⟩. ⟨hal-02056558⟩
973 Consultations
1594 Téléchargements

Altmetric

Partager

More