Unifying notions of pasting diagrams - Archive ouverte HAL
Article Dans Une Revue Higher Structures Année : 2022

Unifying notions of pasting diagrams

Résumé

In this work, we relate the three main formalisms for the notion of pasting diagram in strict ω-categories: Street's parity complexes, Johnson's pasting schemes and Steiner's augmented directed complexes. We first show that parity complexes and pasting schemes do not induce free ω-categories in general, contrarily to the claims made in their respective papers, by providing a counterexample. Then, we introduce a new formalism that is a strict generalization of augmented directed complexes, and corrected versions of parity complexes and pasting schemes, which moreover satisfies the aforementioned freeness property. Finally, we show that there are no other embeddings between these four formalisms.
Fichier principal
Vignette du fichier
article.pdf (849.29 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-02051506 , version 1 (27-02-2019)
hal-02051506 , version 2 (19-02-2024)

Licence

Identifiants

Citer

Simon Forest. Unifying notions of pasting diagrams. Higher Structures, 2022, 6 (1), pp.1-79. ⟨10.21136/HS.2022.01⟩. ⟨hal-02051506v2⟩
93 Consultations
152 Téléchargements

Altmetric

Partager

More