Global Semiclassical Limit from Hartree to Vlasov Equation for Concentrated Initial Data - Archive ouverte HAL
Article Dans Une Revue Annales de l'Institut Henri Poincaré C, Analyse non linéaire Année : 2021

Global Semiclassical Limit from Hartree to Vlasov Equation for Concentrated Initial Data

Résumé

We prove a quantitative and global in time semiclassical limit from the Hartree to the Vlasov equation in the case of a singular interaction potential in dimension d ≥ 3, including the case of a Coulomb singularity in dimension d = 3. This result holds for initial data concentrated enough in the sense that some space moments are initially sufficiently small. As an intermediate result, we also obtain quantitative semiclassical bounds on the space and velocity moments of even order and the asymptotic behaviour of the spatial density due to dispersion effects.
Fichier principal
Vignette du fichier
Vlasov2.pdf (642.7 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02046481 , version 1 (22-02-2019)
hal-02046481 , version 2 (14-12-2021)

Licence

Identifiants

Citer

Laurent Lafleche. Global Semiclassical Limit from Hartree to Vlasov Equation for Concentrated Initial Data. Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 2021, 38 (6), pp.1739-1762. ⟨10.1016/j.anihpc.2021.01.004⟩. ⟨hal-02046481v2⟩
159 Consultations
112 Téléchargements

Altmetric

Partager

More