Automatic Corpus Extension for Data-Driven Natural Language Generation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Automatic Corpus Extension for Data-Driven Natural Language Generation

Elena Manishina
  • Fonction : Auteur
  • PersonId : 779656
  • IdRef : 196554608
Bassam Jabaian
Stéphane Huet
Fabrice Lefèvre

Résumé

As data-driven approaches started to make their way into the Natural Language Generation (NLG) domain, the need for automation of corpus building and extension became apparent. Corpus creation and extension in data-driven NLG domain traditionally involved manual paraphrasing performed by either a group of experts or with resort to crowd-sourcing. Building the training corpora manually is a costly enterprise which requires a lot of time and human resources. We propose to automate the process of corpus extension by integrating automatically obtained synonyms and paraphrases. Our methodology allowed us to significantly increase the size of the training corpus and its level of variability (the number of distinct tokens and specific syntactic structures). Our extension solutions are fully automatic and require only some initial validation. The human evaluation results confirm that in many cases native users favor the outputs of the model built on the extended corpus.
Fichier principal
Vignette du fichier
LREC16.pdf (218.09 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02021894 , version 1 (16-02-2019)

Identifiants

  • HAL Id : hal-02021894 , version 1

Citer

Elena Manishina, Bassam Jabaian, Stéphane Huet, Fabrice Lefèvre. Automatic Corpus Extension for Data-Driven Natural Language Generation. 10th International Conference on Language Resources and Evaluation (LREC), 2016, Portorož, Slovenia. pp.3624-3631. ⟨hal-02021894⟩

Collections

UNIV-AVIGNON LIA
157 Consultations
122 Téléchargements

Partager

More