Inequalities involving Aharonov-Bohm magnetic potentials in dimensions 2 and 3 - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Inequalities involving Aharonov-Bohm magnetic potentials in dimensions 2 and 3

Résumé

This paper is devoted to a collection of results on nonlinear interpolation inequalities associated with Schrödinger operators involving Aharonov-Bohm magnetic potentials, and to some consequences. As symmetry plays an important role for establishing optimality results, we shall consider various cases corresponding to a circle, a two-dimensional sphere or a two-dimensional torus, and also the Euclidean spaces of dimensions two and three. Most of the results are new and we put the emphasis on the methods, as very little is known on symmetry, rigidity and optimality in presence of a magnetic field. The most spectacular applications are new magnetic Hardy inequalities in dimensions 2 and 3.
Fichier principal
Vignette du fichier
BDELL.pdf (441.23 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02021174 , version 1 (15-02-2019)
hal-02021174 , version 2 (25-04-2020)
hal-02021174 , version 3 (20-10-2020)

Identifiants

Citer

Denis Bonheure, Jean Dolbeault, Maria J. Esteban, Ari Laptev, Michael Loss. Inequalities involving Aharonov-Bohm magnetic potentials in dimensions 2 and 3. 2019. ⟨hal-02021174v1⟩
177 Consultations
367 Téléchargements

Altmetric

Partager

More