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1. Introduction

A quantum charged particle described by a complex valued wave function inter-

acts with an electromagnetic potential even in regions in which both magnetic and

electric fields are vanishing, i.e., in regions in which a classical particle would not

be affected by any force. From a mathematical point of view, the wave function

is a nonlocal object which detects the fields even if they are supported in a zero

measure set and equations have to be written in the sense of distributions. In 1959

Y. Aharonov and D. Bohm proposed experiments intended to put in evidence such

phenomena which are nowadays called Aharonov-Bohm effects (see [1]). They sug-

gested to use a long, thin solenoid to produce a magnetic field such that the region

in which the magnetic field is non-zero, approximated by a line, and the region in

which the particle evolves essentially do not overlap. However the magnetic poten-

tial is everywhere non-zero and produces a phase shift of the wave function which

can be detected experimentally by looking for interferences inducing variations of

the particle density. This experiment reveals the role of the phase in Quantum Me-

chanics. It is one of the few experiments that have been realized so far to question

the very foundations of Quantum Mechanics and its relevance for the description

of matter. It is therefore of importance to clarify the mathematical framework,

study the optimal solutions for the underlying functional inequalities and gain as

much qualitative insight as possible. Although the problems studied in this paper

are non-linear, we give quantitative estimates, which are in some cases remarkably

accurate (see [5]) or even sharp.

In dimensions d = 2 and d = 3, the magnetic field can be considered as a

singular measure supported in the set x1 = x2 = 0, where (xi)
d
i=1 is a system of

cartesian coordinates.

On the Euclidean space Rd, the magnetic Laplacian is defined via a magnetic

potential A by

−∆A ψ = −∆ψ − 2 iA · ∇ψ + |A|2ψ − i (div A)ψ .

The magnetic field is B = curl A. The quadratic form associated with −∆A is

given by
´
R3 |∇A ψ|2 dx and well defined for all functions in the space

H1
A(Rd) :=

{
ψ ∈ L2(Rd) : ∇A ψ ∈ L2(Rd)

}
where the magnetic gradient takes the form

∇A := ∇+ iA .

Let us introduce polar coordinates (r, θ) with

r = |x| =
√
x2

1 + x2
2 and r eiθ = x1 + i x2

in dimension d = 2 and cylindrical coordinates (ρ, θ, z) with

ρ =
√
x2

1 + x2
2 , ρ eiθ = x1 + i x2 and z = x3
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in dimension d = 3. In this paper we shall consider Aharonov-Bohm magnetic fields

defined by a magnetic potential such that

A =
a

r2
(x2,−x1) =

a

r2
eθ

in dimension d = 2, where a is a real constant and {er, eθ} with er = x
r denotes

the orthogonal basis associated with our polar coordinates. With similar notations,

we shall also consider the magnetic potential

A =
a

ρ2
(x2,−x1, 0)

in dimension d = 3. In both cases, A is singular at x1 = x2 = 0 and the magnetic

field B = ∇×A is a measure supported in the set x1 = x2 = 0. The magnetic gra-

dient and the magnetic Laplacian are explicitly given in our systems of coordinates

by

∇A =

(
∂

∂r
,

1

r

(
∂

∂θ
− i a

))
, −∆A = − ∂2

∂r2
− 1

r

∂

∂r
− 1

r2

(
∂

∂θ
− i a

)2

in dimension d = 2, and

∇A =

(
∂

∂ρ
,

1

ρ

(
∂

∂θ
− i a

)
,
∂

∂z

)
, −∆A = − ∂2

∂ρ2
−1

ρ

∂

∂ρ
− 1

ρ2

(
∂

∂θ
− i a

)2

− ∂2

∂z2

in dimension d = 3. Adapted definitions will be given later in the case of the circle,

the sphere and the torus.

The primary goal of this paper is to prove new interpolation inequalities of

Gagliardo-Nirenberg and Caffarelli-Kohn-Nirenberg or Hardy-Sobolev type in pres-

ence of an Aharonov-Bohm magnetic potential. One of the key features is that

the corresponding magnetic Laplacian has the same scaling properties as the non-

magnetic Laplacian and that the spectrum is explicit. On the other hand, our

inequalities involve Lp norms in superquadratic (case p > 2) and subquadratic (case

p < 2) regimes. The dual counterpart of these estimates are estimates of Keller-

Lieb-Thirring type, which allow us to give a lower bound of the ground state en-

ergy of Schrödinger operators involving an Aharonov-Bohm magnetic potential and

a potential with an appropriate Lq regularity. Such spectral estimates differ from

semi-classical estimates. As a special case, we are also interested in various Hardy

inequalities corresponding to a singularity at x = 0 that goes like |x|−2 but may

have some anisotropy.

In the absence of a magnetic potential, a typical Gagliardo-Nirenberg inequality

asserts that

‖∇u‖2L2(X ) + λ ‖u‖2L2(X ) ≥ CGN ‖u‖2Lp(X ) ,

where X denotes either the Euclidean space Rd or a manifold, and CGN is a positive,

finite constant. By default, we shall always consider the optimal constant. When

adding a magnetic potential, similar inequalities hold true as a consequence of

the diamagnetic inequality. We shall speak of Hardy-Sobolev inequalities when a
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term
´
X |x|

−2 |u|2 dx is subtracted from the kinetic energy and of Caffarelli-Kohn-

Nirenberg inequalities when various pure power weights are taken into account.

Proving the inequalities is a rather straightforward task but we are interested in

more detailed issues: how do the constants depend on the parameters? Can we

characterize the optimal constants and eventually compute them? Are there optimal

functions and can we compute them?

A central issue is the question of symmetry and symmetry breaking of the opti-

mal functions: are the optimal functions radially symmetric when d = 2 or axially

symmetric when d = 3 for low magnetic fields? Can we estimate the range of the

fields for which there is symmetry? This is a difficult question, but a linear insta-

bility analysis shows that symmetry breaking occurs for large magnetic fields in R2

as was recently proved in [5]. A first result of symmetry with explicit (and actually

optimal range) has been established in [11] in the case d = 1 and our main goal is

to characterize various cases in higher dimensions in which we are able to give a

quantitative answer.

Our results are mostly devoted to the dimensions d = 1 on circles, d = 2

(Euclidean space, two-dimensional torus and two-dimensional sphere) and d = 3 in

the axisymmetric case compatible with the Aharonov-Bohm magnetic potential. It

is a remarkable fact that, in presence of a magnetic potential, a Hardy inequality

can be established in the two-dimensional case (see [11,17,19,21]). Here we try to

systematically derive the Hardy inequality from our Keller-Lieb-Thirring estimates.

From a more mathematical viewpoint, the overall question is to determine the

functional spaces which are adapted to magnetic Schrödinger operators involving

an Aharonov-Bohm magnetic potential. In that sense, this is the continuation of [10]

in the case of the whole space, for general and constant magnetic fields.

This paper is organized as follows. Section 2 is devoted to some preliminary

results and also collects some previous results that we need later. Section 3 is

devoted to subquadratic magnetic interpolation inequalities on the circle and on

the torus, with some applications to Hardy inequalities in dimensions d = 2 and

d = 3. In Section 4 we consider interpolation inequalities in R2 in the presence of an

Aharonov-Bohm magnetic field. We conclude in Section 5 by further considerations

on Hardy inequalities on R3 in the axisymmetric case. For more details, we refer to

the table of contents at the end of the paper.

2. General set-up and preliminary results

2.1. Non-magnetic interpolation inequalities on Sd

On the sphere Sd, we consider the uniform probability measure dσ, which is the

measure induced by the Lebesgue measure in Rd+1, duly normalized and denote by

‖·‖Lq(Sd) the corresponding Lq norm.
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2.1.1. Interpolation inequalities without weights

The interpolation inequalities

‖∇u‖2L2(Sd) ≥
d

p− 2

(
‖u‖2Lp(Sd) − ‖u‖

2
L2(Sd)

)
(2.1)

hold for any p ∈ [1, 2) ∪ (2,+∞) if d = 1 and d = 2, and for any p ∈ [1, 2) ∪ (2, 2∗]

if d ≥ 3, where 2∗ := 2 d/(d− 2) is the Sobolev critical exponent. See [3,4] for p > 2

and [2] if d = 1 or d ≥ 2 and p ≤
(
2 d2 + 1

)
/(d− 1)2.

If p > 2, we know from [9] that there exists a concave monotone increasing

function λ 7→ µ0,p(λ) on (0,+∞) such that µ0,p(λ) is the optimal constant in the

inequality

‖∇u‖2L2(Sd) + λ ‖u‖2L2(Sd) ≥ µ0,p(λ) ‖u‖2Lp(Sd) ∀u ∈ H1(Sd) (2.2)

and that µ0,p(λ) = λ if and only if λ ≤ d/(p−2). In this range, equality is achieved

if and only if u is a constant function: this is a symmetry range. On the opposite,

if λ > d/(p− 2), the optimal function is not constant and we shall say that there is

symmetry breaking.

The case 1 ≤ p < 2 is similar: there exists a concave monotone increasing

function µ 7→ λ0,p(µ) on (0,+∞) such that λ0,p(µ) is the optimal constant in the

inequality

‖∇u‖2L2(Sd) + µ ‖u‖2Lp(Sd) ≥ λ0,p(µ) ‖u‖2L2(Sd) ∀u ∈ H1(Sd) (2.3)

and that λ0,p(µ) = µ if and only if µ ≤ d/(2−p). In this symmetry range, constants

are the optimal functions, while there is symmetry breaking if µ > d/(2−p): optimal

functions are non-constant.

In the symmetry range, positive constants are actually the only positive solutions

of the Euler-Lagrange equation

− ε∆u+ λu = up−1

where ε = ±1 is the sign of (p − 2), while there are multiple solutions in the

symmetry breaking range. The limit case p = 2 can be obtained by taking the limit

as p → 2 and the corresponding inequality is the logarithmic Sobolev inequality.

Much more is known and we refer to [9] for further details.

2.1.2. A weighted Poincaré inequality for the ultra-spherical operator

Using cylindrical coordinates (z, ω) ∈ [−1, 1] × Sd−1, we can rewrite the Laplace-

Beltrami operator on Sd as

∆ = Ld +
1

1− z2
∆ω with Ld u :=

(
1− z2

)
u′′ − d z u′

where ∆ω denotes the Laplace-Beltrami operator on Sd−1 and Ld is the ultra-

spherical operator. In other words, Ld is the Laplace-Beltrami operator on Sd
restricted to functions which depend only on z. The operator Ld has a basis of
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eigenfunctions G`,d, the Gegenbauer polynomials, associated with the eigenvalues

` (`+ d− 1) for any ` ∈ N (see [23]). Here d is not necessarily an integer.

Let us consider the eigenvalue problem

− L2 f +
4 a2

1− z2
f = λ f . (2.4)

By changing the unknown function according to f(z) =
(
1− z2

)a
g(z), we obtain

that g solves

−L2 (2 a+1) g + 2 a (1 + 2 a) g = λ g

which determines the eigenvalues λ = λ`,a given by

λ`,a = `
(
`+ 2 (2 a + 1)− 1

)
+ 2 a (1 + 2 a) = (`+ 2 a) (`+ 2 a + 1) , ` ∈ N . (2.5)

We shall denote by g`,a(z) = G`,2 (2 a+1)(z) the associated eigenfunctions and define

f`,a(z) :=
(
1− z2

)a
g`,a(z). By considering the lowest positive eigenvalue, we obtain

a weighted Poincaré inequality.

Lemma 2.1. For any a ∈ R and any function f ∈ H1
0[−1, 1], we have

ˆ 1

−1

((
1− z2

) ∣∣f ′(z)∣∣2 +
4 a2

1− z2
|f(z)|2

)
dz ≥ λ1,a

ˆ 1

−1

∣∣f(z)− f̄(z)
∣∣2 dz ,

where

f̄(z) =
(
1− z2

)a ´ 1

−1
f(z)

(
1− z2

)a
dz´ 1

−1
(1− z2)

2 a
dz

.

Equality is achieved by a function f if and only if f is proportional to f1,a(z) =

z
(
1− z2

)a
.

Notice for consistency that, if f(z) =
(
1− z2

)a
g(z), then

ˆ 1

−1

((
1− z2

) ∣∣f ′(z)∣∣2 +
4 a2

1− z2
|f(z)|2

)
dz

=

ˆ 1

−1

((
1− z2

) ∣∣g′(z)∣∣2 + 2 a (1 + 2 a) |g(z)|2
) (

1− z2
)2 a

dz ,

where the right-hand side is the Dirichlet form associated with the operator

−L2 (2 a+1) + 2 a (1 + 2 a) .

2.2. Magnetic rings: superquadratic inequalities on S1

In this section, we review a series of results which have been obtained in [11] in the

superquadratic case p > 2, in preparation for an extension to the subquadratic case

p ∈ [1, 2) that will be studied in Section 3.
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2.2.1. Magnetic interpolation inequalities and consequences

Let us consider the superquadratic case p > 2 in dimension d = 1. We recall that

dσ = (2π)−1 dθ where θ ∈ [0, 2π) ≈ S1. As in [11] we consider the space H1(S1) of

the 2π-periodic functions u ∈ C0,1/2(S1), such that u′ ∈ L2(S1). Inequality (2.2)

can be rewritten as

‖u′‖2L2(S1) + λ ‖u‖2L2(S1) ≥ λ ‖u‖
2
Lp(S1) ∀u ∈ H1(S1) (2.6)

for any λ ∈ (0, 1/(p− 2)]. We also have the inequality

‖u′‖2L2(S1) +
1

4
‖u−1‖−2

L2(S1) ≥
1

4
‖u‖2L2(S1) ∀u ∈ H1(S1) , (2.7)

according to [16], with the convention that ‖u−1‖−2
L2(S1) = 0 if u−2 is not integrable

and, as a special case, if u changes sign. Notice that inequality (2.7) is formally the

case p = 2 d/(d− 2) and λ = d/(p− 2) of (2.2) when d = 1 (see [11, Appendix A]).

In [11], it was shown that the inequality (for complex valued functions)

‖ψ′ − i a ψ‖2L2(S1) + λ ‖ψ‖2L2(S1) ≥ µa,p(λ) ‖ψ‖2Lp(S1) ∀ψ ∈ H1(S1,C) (2.8)

is equivalent, after eliminating the phase, to the inequality

‖u′‖2L2(S1) + a2 ‖u−1‖−2
L2(S1) + λ ‖u‖2L2(S1) ≥ µa,p(λ) ‖u‖2Lp(S1) ∀u ∈ H1(S1) .

The equivalence is relatively easy to prove if ψ does not vanish, but some care

is required otherwise: see [11] for details. Here we denote by µa,p(λ) the optimal

constant in (2.8). Using (2.8) and then (2.6), we obtain that

‖u′‖2L2(S1) + a2 ‖u−1‖−2
L2(S1) + λ ‖u‖2L2(S1)

= (1− 4 a2) ‖u′‖2L2(S1) + λ ‖u‖2L2(S1) + 4 a2
(
‖u′‖2L2(S1) + 1

4 ‖u
−1‖2L2(S1)

)
≥ (1− 4 a2)

(
‖u′‖2L2(S1) + a2+λ

1−4 a2 ‖u‖
2
L2(S1)

)
≥ (a2 + λ) ‖u‖2Lp(S1)

under the condition (a2 + λ)/(1− 4 a2) ≤ 1/(p− 2), which provides an estimate of

µa,p(λ). This estimate turns out to be optimal.

Proposition 2.1 ([11]). Let p > 2, a ∈ [0, 1/2], and λ > − a2.

(i) If a2 (p + 2) + λ (p − 2) ≤ 1, then µa,p(λ) = a2 + λ and equality in (2.8) is

achieved only by the constants.

(ii) If a2 (p+ 2) + λ (p− 2) > 1, then µa,p(λ) < a2 + λ and equality in (2.8) is not

achieved by the constants.

The condition a ∈ [0, 1/2] is not a restriction. First, replacing ψ by eiks ψ(s) for

any k ∈ Z shows that µa+k,p(µ) = µa,p(µ) so that we can assume that a ∈ [0, 1].

Then by considering χ(s) = e−is ψ(s), we find that

|ψ′ − i a ψ|2 = |χ′ + i (1 + a)χ|2 ,

hence µa,p(µ) = µ1+a,p(µ).
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2.2.2. Magnetic Hardy inequalities on S1 and R2

As in [11], we can draw an easy consequence of Proposition 2.1 on a Hardy-type

inequality. By Hölder’s inequality applied with q = p/(p− 2), we have

‖ψ′ − i a ψ‖2L2(S1)−µ
−1

ˆ
S1
φ |ψ|2 dθ ≥ ‖ψ′ − i a ψ‖2L2(S1)−µ

−1 ‖φ‖Lq(S1) ‖ψ‖2Lp(S1) .

Using (2.8) with λ = 0 and µ such that µ−1 ‖φ‖Lq(S1) = µa,p(0), we know that

the right-hand side is nonnegative. See [11] for more details. Altogether we obtain

the following magnetic Hardy inequality on S1: for any a ∈ R, any p > 2 and

q = p/(p− 2), if φ is a non-trivial potential in Lq(S1), then

‖ψ′ − i a ψ‖2L2(S1) ≥
µa,p(0)

‖φ‖Lq(S1)

ˆ
S1
φ |ψ|2 dσ ∀ψ ∈ H1

A(S1) . (2.9)

This is a special case of the more general interpolation inequality

‖ψ′ − i a ψ‖2L2(S1) −
ˆ
S1
φ |ψ|2 dθ ≥ ‖ψ′ − i a ψ‖2L2(S1) − µ ‖ψ‖

2
Lp(S1)

≥ −λa,p(µ) ‖ψ‖2L2(S1) (2.10)

with µ = ‖φ‖Lq(S1), where we denote by λa,p(µ) the inverse function of λ 7→ µa,p(λ),

as defined in Proposition 2.1. See [10] for details.

The standard non-magnetic Hardy inequality on Rd, i.e.,ˆ
Rd

|∇ψ|2 dx ≥ 1

4
(d− 2)2

ˆ
Rd

|ψ|2

|x|2
dx ∀ψ ∈ H1(Rd) ,

degenerates if d = 2, but this degeneracy is lifted in the presence of a Aharonov-

Bohm magnetic field. According to [21], we haveˆ
R2

|∇A ψ|2 dx ≥ min
k∈Z

(a− k)2

ˆ
R2

|ψ|2

|x|2
dx ∀ψ ∈ H1(Rd) .

It is natural to ask whether an improvement can be obtained if the singularity |x|−2

is replaced by a weight which has an angular dependence. Using polar coordinates

x ≈ (r, θ) and interpolation inequalities of [9], the inequalityˆ
Rd

|∇ψ|2 dx ≥ (d− 2)2

4 ‖ϕ‖Lq(Sd−1)

ˆ
Rd

ϕ(θ)

|x|2
|ψ|2 dx ∀ψ ∈ H1(Rd)

was proved in [19], under the condition that q ≥ 1 + 1
2 (d− 2)2/(d− 1), again with

normalized measure on Sd−1. Magnetic and non-radial improvements have been

combined in [11]. Let us give a statement in preparation for similar extensions to

the case of dimension d = 3.

Corollary 2.1 ([11]). Let p > 2, a ∈ [0, 1/2], q = p/(p− 2) and assume that ϕ is

a non-negative function in Lq(S1). With the above notations, the inequalityˆ
R2

|∇A ψ|2 dx ≥ τ
ˆ
R2

ϕ(θ)

|x|2
|ψ|2 dx ∀ψ ∈ H1(Rd)
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holds with a constant τ > 0 which is the unique solution of the equation

λa,p(τ ‖ϕ‖Lq(S1)) = 0 .

Moreover, τ = a2/‖ϕ‖Lq(S1) if a2 ≤ 1/(p+ 2).

2.3. Magnetic interpolation inequalities on S2

2.3.1. A magnetic ground state estimate

Let us consider the magnetic Laplacian on S2 and the associated Dirichlet form´
S1 |∇A u|

2 dθ where dσ is the uniform probability measure on S2. Using cylindrical

coordinates (θ, z) ∈ [0, 2π) × [−1, 1], we can write that dσ = 1
4π dz dθ and assume

that the magnetic gradient takes the form

∇A u =

( √
1− z2 ∂u

∂z
1√

1−z2
(
∂u
∂θ − i a u

))
where a > 0 is a magnetic flux, so that

|∇A u|2 =
(
1− z2

) ∣∣∣∣∂u∂z
∣∣∣∣2 +

1

1− z2

∣∣∣∣∂u∂θ − i a u
∣∣∣∣2 .

Lemma 2.2. Assume that a ∈ R. With the above notations, we haveˆ
S2
|∇A u|2 dσ ≥ Λa

ˆ
S2
|u|2 dσ ∀u ∈ H1

A(S2)

with optimal constant

Λa = min
k∈Z
|k − a|

(
|k − a|+ 1

)
. (2.11)

Notice that Λa ≤ Λ1/2 = 3/4.

Proof. We can write u using a Fourier decomposition

u(z, θ) =
∑
`∈N

∑
k∈Z

uk,`(z) e
i k θ

and observe that

|∇A u|2 =
∑
`∈N

∑
k∈Z

((
1− z2

) ∣∣u′k,`(z)∣∣2 +
(k − a)2

1− z2
|uk,`(z)|2

)
where

uk,`(z) = f`,|k−a|/2(z)

ˆ
S2
u(z, θ)

2 f`,|k−a|/2(z) e−i k θ´ 1

−1
(1− z2)

|k−a|
dz

dσ

and f`,|k−a|/2 is an eigenfunction of (2.4) with eigenvalue λ = λ`,a such that 2 a =

|k − a|. Using (2.5), we conclude that the spectrum of −∆A is given by(
`+ |k − a|

) (
`+ |k − a|+ 1

)
, k ∈ Z , ` ∈ N .
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2.3.2. Superquadratic interpolation inequalities and consequences

Proposition 2.2. Let a ∈ R and p > 2. There exists a concave monotone increas-

ing function λ 7→ µa,p(λ) on (−Λa,+∞) such that µa,p(λ) is the optimal constant

in the inequality

‖∇A u‖2L2(S2) + λ ‖u‖2L2(S2) ≥ µa,p(λ) ‖u‖2Lp(S2) ∀u ∈ H1
A(S2).

Furthermore, µa,p(λ) ≥ 2 (λ+ Λa)/
(
2 + (p−2) Λa

)
and limλ→−Λa

µa,p(λ) = 0, with

Λa given by (2.11).

Proof. The proof is adapted from [10, Proposition 3.1]. For an arbitrary t ∈ (0, 1),

we can write that

‖∇A u‖2L2(S2) + λ ‖u‖2L2(S2) ≥ t
(
‖∇A u‖2L2(S2) − Λa ‖u‖2L2(S2)

)
+ (1− t)

(
‖∇|u|‖2L2(S2) +

λ+ tΛa
1− t

‖u‖2L2(S2)

)
≥ (1− t)µ0,p

(
λ+ tΛa

1− t

)
‖u‖2Lp(S2) ,

as a consequence of Lemma 2.2 and of the diamagnetic inequality (see e.g. [22,

Theorem 7.21])

‖∇A u‖2L2(S2) ≥ ‖∇|u|‖
2
L2(S2) .

If λ < 2/(p− 2), the estimate is obtained by choosing t such that

λ+ tΛa
1− t

=
2

p− 2

and recalling that µ0,p (2/(p− 2)) = 2/(p − 2). The limit as λ → −Λa is obtained

by taking the ground state of −∆A on H1(S2) as test function.

With the same method as for the proof of (2.9), we can deduce a Hardy-type

inequality.

Corollary 2.2. Let a ∈ R, p > 2 and q = p/(p− 2). If φ is a non-trivial potential

in Lq(S2), then

‖∇A u‖2L2(S2) ≥
µa,p(0)

‖φ‖Lq(S2)

ˆ
S2
φ |u|2 dσ ∀u ∈ H1

A(S2) .

3. Subquadratic magnetic interpolation inequalities

This section is devoted to results on inequalities involving Lp norms with 1 < p < 2,

which are generically known as subquadratic inequalities.

3.1. Magnetic rings: subquadratic interpolation inequalities on S1

We extend to the range 1 < p < 2 the results of [11] on (2.8) and (2.9) (see summary

in Section 2.2.1).
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3.1.1. Statement of the inequality

As a special case of (2.1) corresponding to d = 1, we have the non-magnetic inter-

polation inequality

(2− p) ‖u′‖2L2(S1) + ‖u‖2Lp(S1) ≥ ‖u‖
2
L2(S1) ∀u ∈ H1(S1) (3.1)

for any p ∈ [1, 2). Our first result is the magnetic counterpart of this inequality.

Lemma 3.1. Let a ∈ R and p ∈ [1, 2). Then there exists a concave monotone

increasing function µ 7→ λa,p(µ) on R+ such that

‖ψ′ − i a ψ‖2L2(S1) + µ ‖ψ‖2Lp(S1) ≥ λa,p(µ) ‖ψ‖2L2(S1) ∀ψ ∈ H1(S1,C) . (3.2)

Here we denote by λa,p(µ) the optimal constant in (3.1).

Proof. The existence of λa,p(µ) is a consequence of (3.1) and of the diamagnetic

inequality : let ρ = |ψ| and φ be such that ψ = ρ
(
θ) exp(i φ(θ)

)
. Since

|ψ′ − i a ψ|2 = |ρ′|2 + |φ′ − a|2 ρ2 ≥ |ρ′|2 ,

we have that ‖ψ′ − i a ψ‖2L2(S1) ≥ ‖ |ψ|
′ ‖2L2(S1). The concavity of µ 7→ λa,p(µ) is a

consequence of the definition of λa,p(µ) as the optimal constant, i.e., the infimum

on H1(S1) 3 ψ of an affine function of µ.

3.1.2. Existence of an optimal function

Lemma 3.2. For all a ∈ [0, 1/2], p ∈ [1, 2) and µ ≥ − a2, equality in (3.2) is

achieved by at least one function in H1(S1).

Proof. We consider a minimizing sequence {ψn} for

λa,p(µ) = inf
{
‖ψ′ − i a ψ‖2L2(S1) + µ ‖ψ‖2Lp(S1) : ψ ∈ H1(S1) , ‖ψ‖L2(S1) = 1

}
.

By the diamagnetic inequality we know that the sequence (ψn)n∈N is bounded in

H1(S1). By the compact Sobolev embeddings, this sequence is relatively compact

in Lp(S1) and in L2(S1). The map ψ 7→ ‖ψ′ − i a ψ‖2L2(S1) is lower semicontinuous

by Fatou’s lemma, which proves the claim.

3.1.3. A non-vanishing property

Lemma 3.3. Asssume that a ∈ (0, 1/2), p ∈ [1, 2) and µ ≥ − a2. If ψ ∈ H1(S1) is

an optimal function for (3.2) with ‖ψ‖Lp(S1) = 1, then ψ(s) 6= 0 for any s ∈ S1.

Proof. The proof goes as in [11]. Let us decompose v(s) = ψ(s) eias as a real and an

imaginary part, respectively v1 and v2, which both solve the same Euler-Lagrange

equation

− v′′j − µ
(
v2

1 + v2
2

) p
2−1

vj = λa,p(µ) vj , j = 1 , 2 .
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Notice that v ∈ C0,1/2(S1) and the nonlinear term is continuous, hence v is smooth.

The Wronskian w = (v1 v
′
2− v′1 v2) is constant. If both v1 and v2 vanish at the same

point, then w vanishes identically, which means that v1 and v2 are proportional.

With a ∈ (0, 1/2), ψ is not 2π-periodic, a contradiction.

3.1.4. A reduction to a scalar minimization problem

We refer to Section 2.1.1 if a = 0 and assume in the proofs that a > 0. The main

steps of the reduction are similar to the case p > 2 of [11]. We repeat the key points

for completeness. Let us define

Qa,p,µ[u] :=
‖u′‖2L2(S1) + a2 ‖u−1‖−2

L2(S1) + µ ‖u‖2Lp(S1)

‖u‖2L2(S1)

.

Notice that if u ∈ H1(S1) is such that u(s0) = 0 for some s0 ∈ (−π, π], then

|u(s)|2 =

(ˆ s

s0

u′ ds

)2

≤
√

2π ‖u′‖L2(S1)

√
|s− s0|

and u−2 is not integrable. In this case, as mentioned earlier, we adopt the convention

that

Qa,p,µ[u] :=
‖u′‖2L2(S1) + µ ‖u‖2Lp(S1)

‖u‖2L2(S1)

. (3.3)

Lemma 3.4. For any a ∈ [0, 1/2], p ∈ [1, 2), µ > − a2,

λa,p(µ) = min
u∈H1(S1)\{0}

Qa,p,µ[u] .

Proof. We consider functions on S1 as 2π-periodic functions on R. If ψ ∈ H1(S1),

then v(s) = ψ(s) eias satisfies the condition

v(s+ 2π) = e2iπa v(s) ∀ s ∈ R (3.4)

and

λa,p(µ) = min
‖v′‖2L2(S1) + µ ‖v‖2Lp(S1)

‖v‖2L2(S1)

where the minimization is taken on the set of the functions v ∈ C0,1/2(R) such that

v′ ∈ L2(−π, π) and (3.4) holds.

With v = u eiφ written in polar form, the boundary condition becomes

u(π) = u(−π) , φ(π) = 2π (a+ k) + φ(−π) (3.5)

for some k ∈ Z, and ‖v′‖2L2(S1) = ‖u′‖2L2(S1) + ‖uφ′‖2L2(S1) so that

λa,p(µ) = min
‖u′‖2L2(S1) + ‖uφ′‖2L2(S1) + µ ‖u‖2Lp(S1)

‖u‖2L2(S1)
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where the minimization is taken on the set of the functions (u, φ) ∈ C(R)2 such

that u′, uφ′ ∈ L2(S1) and (3.5) holds.

Up to a multiplication of u by a constant so that ‖u‖Lp(S1) = 1, the Euler-

Lagrange equations are

−u′′ + |φ′|2 u+ µ |u|p−2 u = λa,p(µ)u and (φ′ u2)′ = 0 .

If a ∈ (0, 1/2), by integrating the second equation and using Lemma 3.3, we find a

constant L such that φ′ = L/u2. Taking (3.5) into account, we deduce from

L

ˆ π

−π

ds

u2
=

ˆ π

−π
φ′ ds = 2π (a+ k)

that

‖uφ′‖2L2(S1) = L2

ˆ π

−π

ds

u2
=

(a+ k)2

‖u−1‖2L2(S1)

.

This establishes that

λa,p(µ) = min
u, k
Qa+k,p,µ[u]

where the minimization is taken on all k ∈ Z and on all functions u ∈ H1(S1).

Because of the restriction a ∈ (0, 1/2), the minimum is achieved by k = 0.

The case a = 1/2 is a limit case that can be handled as in [11, Theorem III.7].

In this case the result holds also true, with the minimizer being in H1
0(S1)\{0}, and

with the convention defined in (3.3) for the expression of Qa,p,µ[u] when u vanishes

in S1.

3.1.5. A rigidity result

If a ∈ (0, 1/2), as in [11], the study of (3.2) is reduced to the study of the inequality

‖u′‖2L2(S1) + a2 ‖u−1‖−2
L2(S1) + µ ‖u‖2Lp(S1) ≥ λa,p(µ) ‖u‖2L2(S1) ∀u ∈ H1(S1) (3.6)

where u is now a real valued function. Necessary adaptations to the trivial case

a = 0 and to the limit case a = 1/2 are straightforward and left to the reader. The

lemma below is the equivalent of Proposition 2.1 for the case 1 < p < 2.

Theorem 3.1. Let p ∈ (1, 2), a ∈ (0, 1/2), and µ > 0.

(i) If µ (2− p) + 4 a2 ≤ 1, then λa,p(µ) = a2 + µ and equality in (3.6) is achieved

only by the constants.

(ii) If µ (2−p)+4 a2 > 1, then λa,p(µ) < a2+µ and equality in (3.6) is not achieved

by the constants.
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Proof. In case (i) we can write

‖u′‖2L2(S1) + a2 ‖u−1‖−2
L2(S1) + µ ‖u‖2Lp(S1)

= (1− 4 a2)

(
‖u′‖2L2(S1) +

µ

1− 4 a2
‖u‖2Lp(S1)

)
+ 4 a2

(
‖u′‖2L2(S1) +

1

4
‖u−1‖2L2(S1)

)
,

deduce from (3.1) that

‖u′‖2L2(S1) +
µ

1− 4 a2
‖u‖2Lp(S1) ≥

µ

1− 4 a2
‖u‖2L2(S1)

if µ/(1− 4 a2) ≤ 1/(2− p) and conclude using (2.7).

In case (ii), let us consider the test function uε := 1 + εw1, where w1 is the

eigenfunction corresponding to the first non-zero eigenvalue of − d2/ds2 on H1(S1),

with periodic boundary conditions, namely, w1(s) = cos s and λ1 = 1. A Taylor

expansion shows that

Qa,p,µ[uε] =
(
1 + a2 − µ (2− p)

)
ε2 + o(ε2) ,

which proves the result. Notice that the Taylor expansion is also valid if a = 0, so

that (p−2) is the optimal constant in (3.1), and also that a similar Taylor expansion

holds in case of (2.7), which formally corresponds to p = − 2.

3.2. Aharonov-Bohm magnetic interpolation inequalities on T2

Let us consider the flat torus T2 = S1×S1 ≈ [−π, π)×[−π, π) 3 (x, y) with periodic

boundary conditions in x and y. We denote by dσ the uniform probability measure

dσ = dx dy/(4π2) and consider the magnetic gradient

∇A ψ :=
(
ψx, ψy − i a ψ

)
and the magnetic kinetic energy

‖∇A u‖2L2(T2) =

¨
T2

|∇A ψ|2 dσ =

¨
T2

(
|ψx|2 + |ψy − i a ψ|2

)
dσ .

3.2.1. A magnetic ground state estimate

Lemma 3.5. Assume that a ∈ [0, 1/2]. Then¨
T2

|∇A ψ|2 dσ ≥ a2

¨
T2

|ψ|2 dσ ∀ψ ∈ H1
A(T2) .

Proof. We make a Fourier decomposition on the basis (ei ` x ei k y)k,`∈Z. We find

that the lowest modes are given by

k = 0 , ` = 0 : λ00 = a2 ,

k = 1 , ` = 0 : λ10 = (1− a)2 ≥ a2 since a ∈ [0, 1/2],

k = 0 , ` = 1 : λ01 = 1 + a2 .
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Therefore, λ00 is the lowest mode.

3.2.2. The Bakry-Emery method applied to the 2-dimensional torus

We consider the flow given by

∂u

∂t
= ∆u+ (p− 1)

|∇u|2

u

and observe that

d

dt
‖u(t, ·)‖2Lp(T2) = 0

on the one hand, and

− 1

2

d

dt

(
‖∇u(t, ·)‖2L2(T2) − λ ‖u(t, ·)‖2L2(T2)

)
= ‖∆u‖2L2(T2) + (p− 1)

¨
T2

∆u
|∇u|2

u
dσ − λ (2− p) ‖∇u‖2L2(T2)

on the other hand. Integrations by parts show that

‖∆u‖2L2(T2) = ‖Hessu‖2L2(T2)

and

¨
T2

∆u
|∇u|2

u
dσ = − 2

¨
T2

Hessu :
∇u⊗∇u

u
dσ +

¨
T2

|∇u|4

u2
dσ .

Hence

− 1

2

d

dt

(
‖∇u(t, ·)‖2L2(T2) − λ ‖u(t, ·)‖2L2(T2)

)
= (2− p)

(
‖∆u‖2L2(T2) − λ ‖∇u‖

2
L2(T2)

)
+ (p− 1)

∥∥Hessu− ∇u⊗∇uu

∥∥2

L2(T2)
.

We know from the Poincaré inequality that

‖∆u‖2L2(T2) ≥ ‖∇u‖
2
L2(T2) ,

with optimal constant 1, so we can conclude in the case 1 ≤ p < 2 that

‖∇u(t, ·)‖2L2(T2) − λ ‖u(t, ·)‖2L2(T2) is monotone nonincreasing if 0 ≤ λ ≤ 1. As a

consequence, we have the following result.

Proposition 3.1. For any p ∈ [1, 2), we have

‖∇u‖2L2(T2) + ‖u‖2Lp(T2) ≥ ‖u‖
2
L2(T2) ∀u ∈ H1(T2) .
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3.2.3. A tensorization result without magnetic potential

A result better than Proposition 3.1 follows from a tensorization argument that can

be found in [8,14].

Proposition 3.2. For any p ∈ [1, 2), we have

(2− p) ‖∇u‖2L2(T2) + ‖u‖2Lp(T2) ≥ ‖u‖
2
L2(T2) ∀u ∈ H1(T2) . (3.7)

Moreover the factor (2− p) is the optimal constant.

Proof. By taking on T2 a function depending only on x ∈ S1, it is clear that the

constant in (3.7) cannot be improved. The proof of (3.7) can be done with the

Bakry-Emery method applied to S1 and goes as follows.

Let us consider the flow given by

∂u

∂t
= u′′ + (p− 1)

|u′|2

u

and observe that d
dt ‖u(t, ·)‖2Lp(S1) = 0 on the one hand, and

− 1

2

d

dt

(
‖u′(t, ·)‖2L2(S1) − λ ‖u(t, ·)‖2L2(S1)

)
= ‖u′′‖2L2(S1) + (p− 1)

ˆ
S1
u′′
|u′|2

u
dσ − λ (2− p) ‖u′‖2L2(S1)

= ‖u′′‖2L2(S1) +
1

3
(p− 1)

ˆ
S1

|u′|4

u2
dσ − λ (2− p) ‖u′‖2L2(S1)

on the other hand. Hence

− 1

2

d

dt

(
‖u′(t, ·)‖2L2(S1) − λ ‖u(t, ·)‖2L2(S1)

)
≤ 0

if λ (2 − p) ≤ 1, because of the Poincaré inequality ‖u′′‖2L2(S1) ≥ ‖u
′‖2L2(S1). Up to

a sign change of λ, this computation also holds if p > 2 or if p = − 2, as noticed

in [11], and it is straightforward to extend it to the limit case p = 2 corresponding

to the logarithmic Sobolev inequality.

According to [8, Proposition 3.1] or [14, Theorem 2.1] and up to a straightfor-

ward adaptation to the periodic setting, the optimal constant for the inequality on

T2 = S1 × S1 is the same as for the inequality on S1, provided 1 ≤ p < 2.

As a consequence of Proposition 3.2, we have the inequality

‖∇u‖2L2(T2) + µ ‖u‖2Lp(T2) ≥ Λ0,p(µ) ‖u‖2L2(T2) ∀u ∈ H1(T2) , (3.8)

where µ 7→ Λ0,p(µ) is a concave monotone increasing function on (0,+∞) such that

Λ0,p(µ) = µ for any µ ∈
(
0, 1/(2− p)

)
.
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3.2.4. A magnetic interpolation inequality in the flat torus

Now let us consider the generalization of (3.8) to the case a 6= 0.

Lemma 3.6. Assume that p ∈ [1, 2) and a ∈ [0, 1/2]. There exists a concave mono-

tone increasing function µ 7→ Λa,p(µ) on (0,+∞) such that limµ→0+ Λa,p(µ) = a2

where Λa,p(µ) is the optimal constant in the inequality

‖∇A u‖2L2(T2) + µ ‖u‖2Lp(T2) ≥ Λa,p(µ) ‖u‖2L2(T2) ∀u ∈ H1
A(T2) . (3.9)

Moreover, we have that

Λa,p(µ) ≥ µ+
(
1− µ (2− p)

)
a2 for any µ ≤ 1

2− p
.

Proof. For an arbitrary t ∈ (0, 1), we can write that

‖∇A u‖2L2(T2) + µ ‖u‖2Lp(T2)

≥ t
(
‖∇A u‖2L2(T2) − a

2 ‖u‖2L2(T2)

)
+ (1− t)

(
‖∇|u|‖2L2(T2) +

µ

1− t
‖u‖pL2(T2)

)
+ t a2 ‖u‖2L2(T2)

≥
[
(1− t) Λ0,p

(
µ

1− t

)
+ t a2

]
‖u‖2L2(T2)

using the diamagnetic inequality ‖∇A u‖2L2(T2) ≥ ‖∇|u| ‖
2
L2(T2). Inequality (3.8) ap-

plies with µ = 1/(2− p) and t = 1− µ (2− p).

3.2.5. A symmetry result in the subquadratic regime

As an application of the results on magnetic rings of Theorem 3.1, we can prove a

symmetry result for the optimal functions in (3.9) in the case p < 2. Let Λa,p(µ)

be the optimal constant in (3.9).

Theorem 3.2. Assume that a ∈ [0, 1/2] and p ∈ [1, 2). Then

Λa,p(µ) = λa,p(µ) if µ ≤ 1

p− 2

and any optimal function for (3.2) is then constant w.r.t. x. Moreover, Λa,p(µ) =

a2 + µ if and only if µ (2− p) + 4 a2 ≤ 1 and equality in (3.9) is then achieved only

by the constants.

Proof. Let us use the notation
ffl
f dx := 1

2π

´ π
−π f dx in order to denote a normal-

ized integration with respect to the single variable x, where y is considered as a

parameter. For almost every x ∈ S1 we can apply (3.2) to the function ψ(x, ·) and

get

‖∇A ψ‖2L2(T2) + µ ‖ψ‖2Lp(T2)

≥ ‖∂xψ‖2L2(T2) + λa,p(µ) ‖ψ‖2L2(T2) + µ ‖ψ‖2Lp(T2) − µ
 ( 

|ψ|p dy
) 2

p

dx
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Let us define u := |ψ|, v(x) :=
(ffl
|u(x, y)|p dy

)1/p
and observe that

|vx| = v1−p
 
up−1 ux dy ≤ v1−p

( 
up dy

) p−1
p
( 
|ux|2 dy

) 1
2
( 

1 dy

) 1
2−

p−1
p

by Hölder’s inequality, under the condition p ≤ 2, that is,

|vx|2 ≤
 
|ux|2 dy ≤

 
|∂xψ|2 dy .

We conclude that if µ ≤ 1/(2− p),
ˆ
S1
|vx|2 dσ+µ

(ˆ
S1
|v|p dσ

)2/p

−µ
ˆ
S1
|v|2 dσ+λa,p(µ) ‖ψ‖2L2(T2) ≥ λa,p(µ) ‖ψ‖2L2(T2)

using (3.1). The equality is achieved by functions v which are constant w.r.t. x and

Theorem 3.1 applies.

3.3. Some consequences in the subquadratic regime

In this section, we draw some consequences of our results on magnetic rings of

Section 3.1. Here dσ denotes the uniform probability measure on S1.

3.3.1. Keller-Lieb-Thirring inequalities on the circle

As in [10], by duality we obtain a spectral estimate.

Proposition 3.3. Assume that a ∈ [0, 1/2] and p ∈ [1, 2). If φ is a nonnegative

potential such that φ−1 ∈ Lq(S1), then the lowest eigenvalue λ1 of − (∂y − i a)2 +φ

is bounded from below according to

λ1 ≥ λa,p
(
‖φ−1‖−1

Lq(S1)

)
and equality is achieved by a constant potential φ if ‖φ−1‖−1

Lq(S1) (2− p) + 4 a2 ≤ 1.

Proof. Using Hölder’s inequality with exponents 2/(2− p) and 2/p, we get that

‖ψ‖2Lp(S1) =

(ˆ
S1
φ−

p
2

(
φ |ψ|2

) p
2 dσ

)2/p

≤ ‖φ−1‖Lq(S1)

ˆ
S1
φ |ψ|2 dσ

with q = p/(2− p), and with µ = ‖φ−1‖−1
Lq(S1),

ˆ
S1
|ψ′ − i a ψ|2 dσ +

ˆ
S1
φ |ψ|2 dσ ≥

ˆ
S1
|ψ′ − i a ψ|2 dσ + µ ‖ψ‖2Lp(S1)

≥ λa,p(µ)

ˆ
S1
|ψ|2 dσ . (3.10)

If φ is constant, then there is equality in Hölder’s inequality.
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The spectral estimate (3.10) is of a different nature than (2.10) because the

potential energy and the magnetic kinetic energy have the same sign. By considering

the threshold case µ (2− p) + 4 a2 = 1, we obtain an interesting estimate.

Corollary 3.1. Let a ∈ [0, 1/2], p ∈ (1, 2) and q = p/(2− p). If φ is a nonnegative

potential such that φ−1 ∈ Lq(S1), then

ˆ
S1
|ψ′ − i a ψ|2 dσ +

1− 4 a2

2− p
‖φ−1‖Lq(S1)

ˆ
S1
φ |ψ|2 dσ

≥
(

1− 4 a2

2− p
+ a2

)
‖ψ‖2L2(S1) ∀ψ ∈ H1(S1) .

3.3.2. Magnetic Hardy-type inequalities in dimensions two and three

Let us denote by θ ∈ [−π, π) the angular coordinate associated with x ∈ R2.

As in [11], we can deduce a Hardy-type inequality for Aharonov-Bohm magnetic

potentials in dimension d = 2.

Corollary 3.2. Let a ∈ [0, 1/2], p ∈ (1, 2) and q = p/(2− p). If φ is a nonnegative

potential such that φ−1 ∈ Lq(S1) with ‖φ−1‖Lq(S1) = 1, then for any complex valued

function ψ ∈ H1(R2) we have
ˆ
R2

|∇A ψ|2 dx+
1− 4 a2

2− p

ˆ
R2

φ(θ)

|x|2
|ψ(x)|2 dx ≥

(
1− 4 a2

2− p
+ a2

) ˆ
R2

|ψ|2

|x|2
dx .

Let us consider cylindrical coordinates (ρ, θ, z) ∈ R+ × [0, 2π) × R such that

|x|2 = ρ2 + z2. In this system of coordinates the magnetic kinetic energy isˆ
R3

|∇A ψ|2 dx =

ˆ
R3

(∣∣∂ψ
∂ρ

∣∣2 + 1
ρ2

∣∣∂ψ
∂θ − i a ψ

∣∣2 +
∣∣∂ψ
∂z

∣∣2) dx
where dµ := ρ dρ dθ dz. The following result was proved in [17, Section 2.2].

Lemma 3.7. For any ψ ∈ H1(R3), we have
˚

R+×[0,2π)×R

(∣∣∂ψ
∂ρ

∣∣2 +
∣∣∂ψ
∂z

∣∣2) dµ ≥ 1

4

˚
R+×[0,2π)×R

|ψ|2

ρ2 + z2
dµ ∀ψ ∈ H1(R3) .

Proof. We give an elementary proof. Assume that ψ is smooth and has compact

support. The inequality follows from the expansion of the square˚
R+×[0,2π)×R

(∣∣∂ψ
∂ρ + ρψ

2 (ρ2+z2)

∣∣2 +
∣∣∂ψ
∂z + z ψ

2 (ρ2+z2)

∣∣2) dµ ≥ 0 ∀ψ ∈ H1(R3)

and of an integration by parts of the cross terms.

Lemma 3.7 is an improved version of the standard Hardy inequality in the

sense that the left-hand side of the inequality does not involve the angular part of

the kinetic energy. A consequence of Corollary 3.1 and Lemma 3.7 is a Hardy-like
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estimate in dimension d = 3. For the angular part we argue as in Corollary 3.2.

Details of the proof are left to the reader.

Theorem 3.3. Let a ∈ [0, 1/2], p ∈ (1, 2) and q = p/(2 − p). If φ is a potential

such that φ−1 ∈ Lq(S1) with ‖φ−1‖Lq(S1) = 1, then for any complex valued function

ψ ∈ H1(R3) we have

ˆ
R3

|∇A ψ|2 dx+
1− 4 a2

2− p

ˆ
R3

φ(θ)

ρ2
|ψ(x)|2 dx

≥ 1

4

ˆ
R3

|ψ|2

|x|2
dx+

(
1− 4 a2

2− p
+ a2

)ˆ
R3

|ψ|2

ρ2
dx .

A simple case is φ ≡ 1, for which we obtain that
ˆ
R3

|∇A ψ|2 dx ≥
1

4

ˆ
R3

|ψ|2

|x|2
dx+ a2

ˆ
R3

|ψ|2

|ρ|2
dx ∀ψ ∈ H1

A(R3) .

4. Aharonov-Bohm magnetic interpolation inequalities in R2

4.1. Magnetic interpolation inequalities without weights

Let us consider on R2 the Aharonov-Bohm magnetic potential A(x) = a |x|−2 eθ,

with the notations of the introduction. Using the diamagnetic inequality

|∇A ψ|2 ≥
∣∣∇|ψ|∣∣2 a.e. in R2

and, for any p ∈ (2,∞) and λ > 0, the Gagliardo-Nirenberg inequality

‖∇ψ‖2L2(R2) + λ ‖ψ‖2Lp(R2) ≥ Cp λ
p
2 ‖ψ‖2L2(R2) ∀ψ ∈ H1(R2) ∩ Lp(R2) (4.1)

with optimal constant Cp, we deduce that

‖∇A ψ‖2L2(R2) + λ ‖ψ‖2L2(R2) ≥ µa,p(λ) ‖ψ‖2Lp(R2) ∀ψ ∈ H1
a(R2) . (4.2)

See [10, Section 3] for details. Here µa,p(λ) is the optimal constant in (4.2) for

any given a, p and λ and, as a function of λ, µa,p(λ) is monotone increasing and

concave. Notice that right-hand sides in (4.1) and (4.2) involve norms with respect

to Lebesgue’s measure. It turns out that µa,p(λ) is equal to the best constant of

the non-magnetic problem.

Proposition 4.1. Let a ∈ R and p ∈ (2,∞). The optimal constant in (4.2) is

µa,p(λ) = Cp λ
p
2 ∀λ > 0

and equality is not achieved on H1(R2) ∩ Lp(R2) if a ∈ R \ Z.

Proof. By construction we know that µa,p(λ) ≥ Cp λ
p/2. By taking an optimal

function ψ for (4.1) and considering ψn(x) = ψ(x+ n e) with n ∈ N and e ∈ S1, we

see that there is equality.
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Let us prove by contradiction that equality is not achieved. If ψ ∈ H1(R2) ∩
Lp(R2) is optimal, let φ = e i a θψ. Since

‖∇A ψ‖2L2(R2) =

ˆ
R2

|∂rψ|2 +
|∂θφ|2

|x|2
dx

and equality in (4.1) is achieved by functions with a constant phase only, this

means that ∂θφ = 0 a.e., a contradiction with the periodicity of ψ with respect to

θ ∈ [0, 2π) if a 6∈ Z.

Proposition 4.1 means that the Aharonov-Bohm magnetic potential plays no

role in non-weighted interpolation inequalities. This is why it is natural to introduce

weighted norms with adapted scaling properties.

4.2. Magnetic Hardy-Sobolev interpolation inequalities

The Caffarelli-Kohn-Nirenberg inequality

ˆ
R2

|∇v|2

|x|2a
dx ≥ Ca

(ˆ
R2

|v|p

|x|b p
dx

)2/p

∀ v ∈ D(R2) (4.3)

has been established in [6] and, earlier, in [20]. The exponent b = a + 2/p is de-

termined by the scaling invariance and as p varies in (2,∞), the parameters a and

b are such that a < b ≤ a + 1 and a < 0. The case a > 0 can be considered in

an appropriate functional space after a Kelvin-type transformation: see [7,13], but

we will not consider this case here. As noticed for instance in [13], by considering

v(x) = |x|a u(x), Ineq. (4.3) is equivalent to the Hardy-Sobolev inequality

ˆ
R2

|∇u|2 dx+ a2

ˆ
R2

|u|2

|x|2
dx ≥ Ca

(ˆ
R2

|u|p

|x|2
dx

)2/p

∀u ∈ D(R2) . (4.4)

The optimal functions for (4.3) are radially symmetric if and only if

b ≥ bFS(a) := a− a√
1 + a2

according to [18,12]. We refer to [5] for more details and for the proof of the following

magnetic Hardy-Sobolev inequality.

Theorem 4.1 ([5]). Let a ∈ [0, 1/2] and p > 2. For any λ > − a2, there is an

optimal function λ 7→ µ(λ) which is monotone increasing and concave such that

ˆ
R2

|∇A ψ|2 dx+ λ

ˆ
R2

|ψ|2

|x|2
dx ≥ µ(λ)

(ˆ
R2

|ψ|p

|x|2
dx

)2/p

∀ψ ∈ H1
A(R2) . (4.5)

If a ∈ [0, 1/2), the optimal function in (4.5) is

ψ(x) =
(
|x|α + |x|−α

)− 2
p−2 ∀x ∈ R2 , with α =

p− 2

2

√
λ+ a2 ,
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up to a scaling and a multiplication by a constant, if

λ ≤ λ? := 4
1− 4 a2

p2 − 4
− a2 .

Conversely, if a ∈ [0, 1/2] and λ > λ• with

λ• :=
8
(√

p4 − a2 (p− 2)2 (p+ 2) (3 p− 2) + 2
)
− 4 p (p+ 4)

(p− 2)3 (p+ 2)
− a2 ,

there is symmetry breaking, i.e., the optimal functions are not radially symmetric.

An explicit computation shows that λ? < λ• for any a ∈ (0, 1/2), and so there is

a zone where we do not know whether the optimal functions in (4.5) are symmetric

or not. Nevertheless, as shown in [5], the values of λ? and λ• are numerically very

close to each other. If λ ≤ λ?, the expression of µ(λ) is explicit and given by

µ(λ) =
p

2
(2π)1− 2

p
(
λ+ a2

)1+ 2
p

(
2
√
π Γ
(

p
p−2

)
(p− 2) Γ

(
p
p−2 + 1

2

))1− 2
p

.

See [5, Appendix] for the details of the computation of the constant.

Inspired by the equivalence of (4.3) and (4.4), we prove that the magnetic Hardy-

Sobolev inequality (4.5) is equivalent to an interpolation inequality of Caffarelli-

Kohn-Nirenberg type in the presence of the Aharonov-Bohm magnetic field.

Corollary 4.1 (Magnetic Caffarelli-Kohn-Nirenberg inequality). Assume

that p ∈ (2,+∞), A(x) = a |x|−2 eθ for some a ∈ [0, 1/2] and a ≤ 0. With µ as in

Theorem 4.1, for any γ < a2 + a2, we have that
ˆ
R2

|∇A φ|2

|x|2a
dx ≥ γ

ˆ
R2

|φ|2

|x|2a+2
dx+µ(a2−γ)

(ˆ
R2

|φ|p

|x|a p+2
dx

)2/p

∀φ ∈ D(R2;C)

and µ(λ) with λ = a2 − γ is the optimal constant.

The cases of symmetry and symmetry breaking in Theorem 4.1 have their exact

counterpart in Corollary 4.1. Details are left to the reader.

Proof. Let us consider the function φ(x) = |x|a ψ(x) and observe thatˆ
R2

|∇A φ|2

|x|2a
dx =

ˆ
R2

|∇A ψ|2 dx+ a2

ˆ
R2

|ψ|2

|x|2
dx

and conclude by applying (4.5) to ψ with λ = a2 − γ.

4.3. A magnetic Hardy inequality in R2

Another consequence of Theorem 4.1 is the following magnetic Keller-Lieb-Thirring

inequality, which can be found in [5, Theorem 1]. Let q = p/(p − 2). The ground

state energy λ1 of the magnetic Schrödinger operator −∆A − φ on R2 is such that

λ1(−∆A − φ) ≥ −λ (µ) where µ =

(ˆ
R2

|φ|q |x|2 (q−1) dx

)1/q

(4.6)
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and µ 7→ λ(µ) is a convex monotone increasing function on R+ such that

limµ→0+ λ(µ) = − a2, defined as the inverse of λ 7→ µ(λ) of Theorem 4.1. Again

λ (µ) is optimal in (4.6) and the cases of symmetry and symmetry breaking are in

correspondence with the ones of Theorem 4.1.

Alternatively, let us consider a function φ on R2. We can estimate an associated

magnetic Schrödinger energy from below by

ˆ
R2

(
|∇A ψ|2 − τ

φ

|x|2
|ψ|2

)
dx ≥

ˆ
R2

|∇A ψ|2 dx− τ
(ˆ

R2

|φ|q

|x|2
dx

) 1
q
(ˆ

R2

|ψ|p

|x|2
dx

) 2
p

by Hölder’s inequality, with q = p/(p − 2), for an arbitrary parameter τ > 0. For

an appropriate choice of τ , we obtain the following result.

Theorem 4.2 (A magnetic Hardy inequality). Assume that q ∈ (1, 2), A(x) =

a |x|−2 eθ for some a ∈ [0, 1/2]. Then for any function φ ∈ Lq
(
R2 |x|−2 dx

)
, we have

ˆ
R2

|∇A ψ|2 dx ≥ µ(0)

(ˆ
R2

|φ|q

|x|2
dx

)− 1
q
ˆ
R2

φ

|x|2
|ψ|2 dx ∀ψ ∈ H1

A(R2) ,

where µ(·) is the best constant in (4.5). Finally, when a2 ≤ 4/(12 + p2), we know

the value of µ(0) explicitly:

µ(0) =
p

2
(2π)1− 2

p a2+ 4
p

(
2
√
π Γ
(

p
p−2

)
(p− 2) Γ

(
p
p−2 + 1

2

))1− 2
p

.

5. Aharonov-Bohm magnetic Hardy inequalities in R3

In this section we address Aharonov-Bohm magnetic potentials in dimension d = 3.

5.1. An improved Hardy inequality with radial symmetry

In [15, Section V.B], it is proved that for all a > 0, there is a constant C(a) such

that C(a) = a2 if a ∈ [0, 1/2] and
ˆ
R3

|∇A ψ|2 dx ≥
(

1
4 + C(a)

)ˆ
R3

|ψ|2

|x|2
dx ∀ψ ∈ H1

A(R3) . (5.1)

If we allow for an angular dependence, we have the following result.

Theorem 5.1. Let a ∈ [0, 1/2] and q ∈ (1,+∞). Then, for all φ ∈ Lq(S2),
ˆ
R3

|∇A ψ|2 dx ≥
ˆ
R3

(
1

4
+

µa,p(0)

‖φ‖Lq(S2)
φ(ω)

)
|ψ|2

|x|2
dx ∀ψ ∈ H1

A(R3) .

Here ω = x/|x| and µa,p is defined as in Proposition 2.2.

In the case a ∈ [0, 1/2], according to Proposition 2.2, we find in the limit case

as p → 2+ that µa,2(0) ≥ Λa = a (a + 1) and improve the estimate (5.1) to

C(a) = a (a+ 1) if φ ≡ 1.
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Proof. Let us use spherical coordinates (r, ω) ∈ [0,+∞) × S2. The result follows

from an expansion of the square and an integration by parts in

0 ≤
ˆ +∞

0

∣∣∂rψ + 1
2 r ψ

∣∣2 r2 dr =

ˆ +∞

0

|∂rψ|2 r2 dr − 1
4

ˆ +∞

0

|ψ|2 dr

for the radial part of the Dirichlet integral, and from Corollary 2.2 for the angular

part.

5.2. An improved Hardy inequality with cylindrical symmetry

The improved Hardy inequality (without angular kinetic energy) of Lemma 3.7

and (2.9) can be combined into the following improved Hardy inequality in presence

of a magnetic potential.

Theorem 5.2. Let a ∈ [0, 1/2], p > 2, q = p/(p − 2) and φ ∈ Lq(S1). For any

ψ ∈ H1
A(R3), we haveˆ

R3

|∇A ψ|2 dx ≥
1

4

ˆ
R3

|ψ|2

|x|2
dx+

µa,p(0)

‖φ‖Lq(S1)

˚
R+×[0,2π)×R

φ(θ)

ρ2
|ψ(ρ, θ, z)|2 dµ .

Notice that the inequality is a strict improvement upon the Hardy inequality

without a magnetic potential combined with the diamagnetic inequality. A sim-

ple case which is particularly illuminating is φ ≡ 1 with a2 ≤ 1/(p + 2) so that

µa,p(0) = a2 according to Proposition 2.1, in which case we obtain thatˆ
R3

|∇A ψ|2 dx ≥
1

4

ˆ
R3

|ψ|2

|x|2
dx+ a2

ˆ
R3

|ψ|2

|ρ|2
dx ∀ψ ∈ H1

A(R3) .
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[4] M.-F. Bidaut-Véron and L. Véron, Nonlinear elliptic equations on compact Rie-
mannian manifolds and asymptotics of Emden equations, Invent. Math., 106 (1991),
pp. 489–539.



Inequalities with Aharonov-Bohm magnetic potentials 25

[5] D. Bonheure, J. Dolbeault, M. Esteban, A. Laptev, and M. Loss, Symmetry
results in two-dimensional inequalities for Aharonov-Bohm magnetic fields. Preprint
Hal: 02003872 or ArXiv: 1902.01065, Feb. 2019.

[6] L. Caffarelli, R. Kohn, and L. Nirenberg, First order interpolation inequalities
with weights, Compositio Math., 53 (1984), pp. 259–275.

[7] F. Catrina and Z.-Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: sharp
constants, existence (and nonexistence), and symmetry of extremal functions, Comm.
Pure Appl. Math., 54 (2001), pp. 229–258.
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