Point interactions for 3D sub-Laplacians - Archive ouverte HAL
Article Dans Une Revue Annales de l'Institut Henri Poincaré C, Analyse non linéaire Année : 2020

Point interactions for 3D sub-Laplacians

Résumé

In this paper we show that, for a sub-Laplacian $\Delta$ on a $3$-dimensional manifold $M$, no point interaction centered at a point $q_0\in M$ exists. When $M$ is complete w.r.t. the associated sub-Riemannian structure, this means that $\Delta$ acting on $C^\infty_0(M\setminus\{q_0\})$ is essentially self-adjoint. A particular example is the standard sub-Laplacian on the Heisenberg group. This is in stark contrast with what happens in a Riemannian manifold $N$, whose associated Laplace-Beltrami operator is never essentially self-adjoint on $C^\infty_0(N\setminus\{q_0\})$, if $\dim N\le 3$. We then apply this result to the Schr\"odinger evolution of a thin molecule, i.e., with a vanishing moment of inertia, rotating around its center of mass.
Fichier principal
Vignette du fichier
1902.05475.pdf (517.11 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02020844 , version 1 (25-04-2024)

Identifiants

Citer

Riccardo Adami, Ugo Boscain, Valentina Franceschi, Dario Prandi. Point interactions for 3D sub-Laplacians. Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 2020, ⟨10.1016/j.anihpc.2020.10.007⟩. ⟨hal-02020844⟩
241 Consultations
28 Téléchargements

Altmetric

Partager

More