INVARIANT WEAKLY CONVEX COCOMPACT SUBSPACES FOR SURFACE GROUPS IN A 2-BUILDINGS - Archive ouverte HAL
Article Dans Une Revue Transactions of the American Mathematical Society Année : 2022

INVARIANT WEAKLY CONVEX COCOMPACT SUBSPACES FOR SURFACE GROUPS IN A 2-BUILDINGS

Anne Parreau

Résumé

This paper deals with non-Archimedean representations of punctured surface groups in PGL3, associated actions on (not necessarily discrete) Euclidean buildings of type A2, and degenerations of convex real projective structures on surfaces. The main result is that, under good conditions on Fock-Goncharov generalized shear parameters , non-Archimedean representations acting on the Euclidean building preserve a cocompact weakly convex subspace, which is part flat surface and part tree. In particular the eigenvalue and length(s) spectra are given by an explicit finite A2-complex. We use this result to describe degenerations of convex real projective structures on surfaces for an open cone of parameters. The main tool is a geometric interpretation of Fock-Goncharov parameters in A2-buildings.
Fichier principal
Vignette du fichier
degFG_soumis1.pdf (643.47 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02020181 , version 1 (15-02-2019)

Identifiants

Citer

Anne Parreau. INVARIANT WEAKLY CONVEX COCOMPACT SUBSPACES FOR SURFACE GROUPS IN A 2-BUILDINGS. Transactions of the American Mathematical Society, 2022, 375 (04), pp.2293-2339. ⟨10.1090/tran/8344⟩. ⟨hal-02020181⟩
57 Consultations
64 Téléchargements

Altmetric

Partager

More