Application of Padé approximation to Euler's constant and Stirling's formula - Archive ouverte HAL
Article Dans Une Revue Ramanujan Journal Année : 2021

Application of Padé approximation to Euler's constant and Stirling's formula

Résumé

The Digamma function Γ' /Γ admits a well-known (divergent) asymptotic expansion involving Bernoulli's numbers. Using Touchard type orthogonal polynomials, we determine an eective bound for the error made when this asymptotic series is replaced by its nearly diagonal Padé approximants. By specialization, we obtain new fast converging sequences of approximations to Euler's constant γ. Even though these approximations are not strong enough to prove the putative irrationality of γ, we explain why they can be viewed, in some sense, as analogues of Apéry's celebrated sequences of approximations to ζ(2) and ζ(3). Similar ideas applied to the asymptotic expansion log Γ enable us to obtain a refined version of Stirling's formula.
Fichier principal
Vignette du fichier
gammarpadef.pdf (396.23 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02017852 , version 1 (13-02-2019)
hal-02017852 , version 2 (16-03-2019)
hal-02017852 , version 3 (09-08-2019)

Identifiants

Citer

Marc Prévost, Tanguy Rivoal. Application of Padé approximation to Euler's constant and Stirling's formula. Ramanujan Journal, 2021, 54 (1), pp.177-195. ⟨10.1007/s11139-019-00201-9⟩. ⟨hal-02017852v3⟩
368 Consultations
755 Téléchargements

Altmetric

Partager

More