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Introduction

The Digamma function Ψ(z) := Γ (z)/Γ(z) is represented for any z ∈ C \ Z ≤0 by the convergent series

Ψ(z) = -γ + ∞ k=0 1 k + 1 - 1 k + z .
Here, γ denotes Euler's constant, classically dened as

γ := lim k→+∞ H k -log(k) ,
where H k := k j=1 1 j

. In particular, Ψ(1) = -γ and more generally, for any integer n ≥ 0, Ψ(n + 1) = H n -γ, as follows from the functional equation

Ψ(n + z) = Ψ(z) + n-1 k=0 1 k + z
, n ≥ 0.

The (even) Bernoulli numbers (B 2n ) n≥1 are dened by the power series expansion

t e t -1 + t 2 -1 = ∞ n=1 B 2n (2n)! t 2n ,
which converges for |t| < 2π. It is well-known (see Section 2) that Ψ admits the expansion

Ψ(z) ∼ log(z) - 1 2z - ∞ n=1 B 2n 2n • 1 z 2n , z ∈ R, z → +∞, (2) 
where the formal series is divergent but asymptotic in the Poincaré sense.

Our rst result is that nearly diagonal Padé approximants to the divergent series in [START_REF] Apéry | Irrationality of ζ(2) and ζ(3)[END_REF] provide sequences of fast convergent approximations to Ψ. These sequences can be viewed as a way to sum the asymptotic expansion [START_REF] Apéry | Irrationality of ζ(2) and ζ(3)[END_REF], and they t into the Remainder Padé Approximants method introduced in [START_REF] Prévost | A new proof of the irrationality of ζ(2) and ζ(3) using Padé approximants[END_REF]. As a special case, we obtain completely new sequences that converge quickly to γ.

We introduce a formal power series

Φ(z) := ∞ n=0 (-1) n B 2n+2 2n + 2 z n ∈ Q[[z]]. (3) 
The basic properties of Padé approximation are recalled in 3, and below k -1/k Φ (z) ∈ Q(z) denotes the Padé approximant of Φ with numerator and denominator of degree ≤ k-1 and ≤ k, respectively.

Theorem 1. For any real number x > 0 and any integers k ≥ 1, n ≥ 0, we have

Ψ(x) = log(x n ) - n j=0 1 j + x + 1 2x n - 1 x 2 n k -1/k Φ - 1 x 2 n + ε k (x n ), (4) 
where x n := x + n and

|ε k (x n )| ≤ (2k + 1)(2k + 2) (4k + 3)x 4k+2 n • (2k)! 2 4k+2 2k+1
2 .
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When n is xed, the right-hand side of [START_REF] Brezinski | Padé-type approximation and general orthogonal polynomials[END_REF] does not tend to 0 as k → +∞, and it is not clear whether ε k (x n ) tends to 0 or not in these conditions. On the other hand, when k is xed and n → +∞, then ε k (x n ) tends to 0, but not very fast. In fact, a much faster convergence holds by letting k depend on n. For instance, we have the following corollary. Corollary 1. Let r ∈ Q be such that 0 < r < 2e. Then, for every integer n ≥ 1 such that rn is an integer, we have

γ = H n -log(n) - 1 2n + 1 n 2 rn -1/rn Φ - 1 n 2 + δ r,n , (6) 
where δ r,n is such that lim sup n→+∞,rn∈N

δ r,n 1/n ≤ r 2e 4r . (7) 
To prove this corollary, we take in (4) x = 1, change n to n -1, set k = rn and δ r,n := ε rn (n). We obtain [START_REF] Campbell | Les Intégrales eulériennes et leurs applications : étude approfondie de la fonction gamma[END_REF]. Then, we apply Stirling's formula

n! = n n e -n √ 2πn (1 + o(1)), n → +∞ (8) 
to the righ-hand side of (5), and (7) follows. The sequence

g r,n := H n -log(n) - 1 2n + 1 n 2 rn -1/rn Φ - 1 n 2 (9) 
converges to γ at geometrical speed as n → +∞, such that rn ∈ N. We explain in 7 why the sequences (g r,n ) n≥1 are, in some sense, analogues of Apéry's celebrated sequences of approximations to ζ(2) and ζ(3). Because of the term log(n) in g r,n , the putative irrationality of γ cannot be deduced from the convergence of g r,n to γ by the usual irrationality criterions, simply because g r,n / ∈ Q. But such a deduction is also ruled out by the denominator d n of the rational numbers

H n -1 2n + 1 n 2 rn -1/rn Φ (-1 n 2 ), which is numerically such that d n (γ -g r,n ) → +∞.
Theorem 1 is very exible. Indeed, every choice of k as a sub-linear function of n leads to a new sequence of approximations of values of Ψ(x), though apparently not strong enough to prove an irrationality result when x ∈ Q. In that case, Gauss' formula [6, p. 37, Eq. ( 5)] provides an expression of Ψ(x) in terms of γ and logarithms of algebraic numbers, for instance Ψ(1/2) = -γ -log(4). A result similar to Corollary 1 could be stated for these values. For other sequences of rational approximations to γ built with Padé approximants for very dierent functions, we refer to [START_REF] Aptekarev | Rational approximants for Euler constant and recurrence relations[END_REF][START_REF]Rational approximations for values of derivatives of the Gamma function[END_REF].

We now come to our second result. As recalled in 2, we have the well-known expansion

log Γ(z) ∼ z log(z) -z + 1 2 log(2π/z) + ∞ n=1 B 2n 2n(2n -1) • 1 z 2n-1 , z → +∞, z ∈ R. (10) 
The formal series is divergent but asymptotic in Poincaré sense. 

Ω(z) := ∞ n=0 (-1) n+1 B 2n+4 (2n + 4)(2n + 3) z n ∈ Q[[z]]. (11) 
We rst state a result very similar to Theorem 1.

Theorem 2. For any real number x > 0 and any integers k ≥ 1, n ≥ 0, we have

log Γ(x n ) = x n log(x n ) -x n + 1 2 log(2π/x n ) + 1 12x n - 1 x 3 n k -1/k Ω - 1 x 2 n + ε k (x n ),
where x n := x + n and

| ε k (x n )| ≤ (2k + 1)(2k + 2) (4k + 3)x 4k+2 n • (2k)! 2 4k+2 2k+1 2 .
In particular, with x = 1, n changed to n -1, k set equal to rn and δ r,n := ε rn (n), we obtain the following rened version of Stirling's formula [START_REF] Prévost | A new proof of the irrationality of ζ(2) and ζ(3) using Padé approximants[END_REF].

Corollary 2. Let r ∈ Q be such that 0 < r < 2e. Then, for every integer n ≥ 1 such that rn is an integer, we have

log(n!) = n log(n) -n + 1 2 log(2πn) + 1 12n - 1 n 3 rn -1/rn Ω - 1 n 2 + δ r,n , (12) 
where

lim sup n→+∞,rn∈N δ r,n 1/n ≤ r 2e 4r . ( 13 
)
We did not try to compare the eciency of ( 12) with respect to other existing algorithms to compute large values of n!. We simply view this result as another interesting application of our method.

The paper is organized as follows. The four following sections are devoted to the proofs of the theorems. In 2, we list many important formulas for Ψ(z) and log(Γ(z)). In 3, we recall various properties of Padé approximants. In 4 and 5, we give the proofs of Theorems 1 and 2; the main diculty is in proving the convergence of the Padé approximants because no explicit expressions are known for their remainders in these precise situations. The last three sections are devoted to comments related to our results. In 6, we explain how to deduce from Corollary 1 fast converging sequences of rational approximations to γ free of any logarithm. We compare our results with those of Apéry in 7. Finally, in 8, we present some computations related to Corollary 1 as well as a few open problems.

2. Formulas for Ψ(z), log(Γ(z)) and the Bernoulli numbers

In this section, we explain how the asymptotic expansions (2) and ( 10) can be obtained, and we also present two important integral representations of the Bernoulli numbers needed for the proofs of both theorems. We will rst consider Ψ(z) and then log(Γ(z)). This material is classical; we don't claim any originality but it is important to recall it.

We dene log(z) for z ∈ D = C \ (-∞, 0] with its principal determination (i.e., -π < arg(z) < π). The Digamma function admits various integral representations, in particular the following ones (attributed to Binet and Poisson respectively in [6, p. 201]):

Ψ(z) = log(z) - 1 2z - ∞ 0 1 e t -1 + 1 2 - 1 t e -zt dt, (z) > 0 (14) 
and

Ψ(z) = log(z) - 1 2z - ∞ 0 2t (t 2 + z 2 )(e 2πt -1) dt, z ∈ D \ iR (15) 
From the denition (1) of the Bernoulli numbers, we see that we can apply Watson's lemma [START_REF] Miller | Applied asymptotic analysis[END_REF]Chapter 2,[START_REF] Apéry | Irrationality of ζ(2) and ζ(3)[END_REF] to the integral on the right-hand side of ( 14), and it follows that Ψ admits the asymptotic expansion

Ψ(z) ∼ log(z) - 1 2z - ∞ n=1 B 2n 2n • 1 z 2n , z ∈ R, z → +∞.
We shall now prove that ((-1) k B 2k+2 2k+2 ) k≥0 is the sequence of moments for the positive weight α(u) :=

1 e 2π √ u -1 1 [0,+∞) (u)
, where 1 A denotes the indicator function of a set A. See also [START_REF] Campbell | Les Intégrales eulériennes et leurs applications : étude approfondie de la fonction gamma[END_REF]p. 201,Eq. (48)]. Proposition 1. For every integer k ≥ 0, we have

(-1) k B 2k+2 2k + 2 = ∞ 0 u k e 2π √ u -1 du. (16) 
Proof. For any integer N ≥ 0, we have

t 2N + (-1) N +1 z 2N t 2 + z 2 = N -1 k=0 (-1) N -k-1 t 2k z 2N -2k-2 , so that ∞ 0 2t (t 2 + z 2 )(e 2πt -1) dt = N -1 k=0 (-1) k z 2k+2 ∞ 0 2t 2k+1 e 2πt -1 dt + (-1) N z 2N ∞ 0 2t 2N +1 (t 2 + z 2 )(e 2πt -1)
dt.

Hence for z ∈ D \ iR,

Ψ(z) = log(z) - 1 2z + N -1 k=0 (-1) k+1 z 2k+2 ∞ 0 2t 2k+1 e 2πt -1 dt + (-1) N +1 z 2N ∞ 0 2t 2N +1 (t 2 + z 2 )(e 2πt -1)
dt.
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Eq. ( 17) is a nite form of the asymptotic expansion (2), because the integral is obviously O(1/z 2 ) as z → +∞. By uniqueness of such an expansion, it follows that for any integer k ≥ 0,

(-1) k B 2k+2 2k + 2 = ∞ 0 2t 2k+1 e 2πt -1 dt = ∞ 0 u k e 2π √ u -1 du,
after the change of variable t = √ u.

We now deal with various formulas for log Γ(z) . Integrating Binet's formula ( 14) between 0 and z, we get, for any z such that (z

) > 0, log Γ(z) = z log(z) -z + 1 2 log(2π/z) + ∞ 0 1 t 1 e t -1 + 1 2 - 1 t e -zt dt. ( 18 
)
To obtain (18), we rst assume that z > 0 so that we can apply Fubini's Theorem to the positive function (s, t)

→ ( 1 e t -1 + 1 2 -1 t )e -st 1 [0,z] (s) ∈ L 1 ([0, z] × [0, +∞))
; then analytic continuation enables us to obtain (18) for (z) > 0. The integration constant 1 2 log(2π) is a consequence of Stirling's formula [START_REF] Prévost | A new proof of the irrationality of ζ(2) and ζ(3) using Padé approximants[END_REF], because the integral is o(1). Now, we can apply Watson's lemma to the integral in (18) and we obtain the asymptotic expansion

log Γ(z) ∼ z log(z) -z + 1 2 log(2π/z) + ∞ n=1 B 2n 2n(2n -1) • 1 z 2n-1 , z ∈ R, z → +∞.
Moreover, integrating Poisson's formula (15) between 0 and z (which is possible for similar reasons as above), we get, for any z ∈ D \ iR:

log Γ(z) = z log(z) -z + 1 2 log(2π/z) -2 ∞ 0 arctan(z/t) e 2πt -1 dt = z log(z) -z + 1 2 log(2π/z) - z π ∞ 0 log(1 -e -2πt ) t 2 + z 2 dt. ( 19 
)
The integration constant 1 2 log(2π) is again a consequence of ( 8), because the integral is o(1). The second integral is obtained from the rst one by integration by parts.

We shall now prove that the sequence ((-1) k+1 B 2k+4 (2k+3)(2k+4) ) k≥0 is the sequence of moments of the positive weight β(u

) := - √ u log(1 -e -2π √ u )/(2π)1 [0,+∞) (u) ∈ L 1 (R).
Proposition 2. For every integer k ≥ 0, we have

(-1) k+1 B 2k+4 (2k + 3)(2k + 4) = - 1 2π ∞ 0 u k+1/2 log(1 -e -2π √ u )du. (20) 
Proof. Integrating by parts on the righ-hand side of the equation

(-1) k B 2k+2 2k + 2 = ∞ 0 2t 2k+1 e 2πt -1 dt, ∀k ≥ 0,
(obtained in the proof of Proposition 1) and then changing k to k + 1, we obtain, for any k ≥ 0,

(-1) k+1 B 2k+4 (2k + 3)(2k + 4) = - 1 π ∞ 0 t 2k+2 log(1 -e -2πt
)dt and (20) follows from the change of variable t = √ u.

We deduce from (19) and the change of variable t =

√ u that, for any z ∈ D \ iR, log Γ(z) = z log(z) -z + 1 2 log(2π/z) + B 2 2z - 1 z ∞ 0 β(u) z 2 + u du. (21) 
Note that (20) also holds for k = -1 which means that ((-1) k B 2k+2 (2k+1)(2k+2) ) k≥0 is the sequence of moments of the positive weight β(u)/u ∈ L 1 (R) but this property is not sucient for our purpose.

Reminder of Padé approximants

In this section, we recall a few classical properties of Padé approximation theory.

Let F (z) = ∞ k=0 c k z k ∈ K[[z]],
where K is a subeld of C. For every given integers p, q ≥ 0, there exist P (z) and Q(z) ∈ K[z], Q = 0, and of respective degrees ≤ p and ≤ q, such that z -p-q-1 Q(z)F (z) -P (z) ∈ C [[z]]. The existence of Q = 0 is immediate because it amounts to the resolution of a non-trivial system of q linear equations (the vanishing conditions) with q + 1 indeterminates (the coecients of Q), and P is then uniquely associated to Q. The reduced rational fraction P/Q is unique and is by denition the Padé approximant [p/q] F of F .

We have the general expression

Q(z) = η p,q c p-q+1 c p-q+2 • • • c p+1 . . . . . . • • • . . . c p c p+1 • • • c p+q z q z q-1 • • • 1 , ( 22 
)
where η p,q ∈ K * , and by convention c k = 0 if k ≤ -1. There also exists a (more complicated) determinantal expression for P (z), but we can also use P (z) = [Q(z)F (z)] ≤p , the truncation of the Taylor expansion of Q(z)F (z) up to z p . From (22), we see that Q(z) has degree exactly q if, and only if, the Hankel determinant

H q (c p-q+2 ) := c p-q+2 c p-q+3 • • • c p+1 c p-q+3 c p-q+4 • • • c p+2 . . . . . . • • • . . . c p+1 c p+2 • • • c p+q = 0.
Moreover, Q(0) = 0 if, and only if, the Hankel determinant

H q (c p-q+1 ) := c p-q+1 c p-q+2 • • • c p c p-q+2 c p-q+3 • • • c p+1 . . . . . . • • • . . . c p c p+1 • • • c p+q-1 = 0.
Of particular interest to us is the case of

F (z) = R ω(u)
1-uz du where ω ∈ L 1 (R) is such that ω(u) ≥ 0 for all u ∈ R, and the support of ω, say S, is a closed subinterval of R. The function F is analytic (at least) at any z such that 1/z / ∈ S. We further assume that

0 < m k := R u k ω(u)du < ∞, ∀k ≥ 0.
Then, for all N ≥ 0,

F (z) = N -1 k=0 m k z k + z N R u N 1 -uz ω(u)du,
so that ∞ k=0 m k z k is the asymptotic expansion of the function F at z = 0 in a suitable angular sector. Consider a sequence (q k ) k≥0 of orthogonal polynomials with respect to ω, i.e. R u j q k (u)ω(u)du = 0, ∀j, k, 0 ≤ j < k, with q 0 (z) := 1; each q k is of degree k, see below. For any k ≥ 0, we set

p k (z) := R q k (z) -q k (u) z -u ω(u)du,
which is a polynomial of degree ≤ k -1 (equal to 0 if k = 0), and we also set

R k (z) := z k R q k (u) 1 -zu ω(u)du. For simplicity, let Q k (z) := z k q k (1/z) and P k (z) := z k-1 p k (1/z). A straightforward com- putation shows that R k (z) = Q k (z)F (z) -P k (z). Moreover, since 1-(zu) k 1-zu is a polynomial in u of degree k -1, we have by orthogonality R k (z) = z k R 1 -(zu) k 1 -zu q k (u)ω(u)du = 0 + z 2k R u k q k (u) 1 -zu ω(u)du. Hence, R k (z) ∈ z 2k C[[z]],
which means in other words that ( 1 )

P k (z) Q k (z) = [k -1/k] F (z).
In that case, both H q (m p-q+1 ) = H k (m 0 ) and H q (m p-q+2 ) = H k (m 1 ) (with p = k -1 and q = k) are automatically non-zero for any p, q ≥ 0 (by [5, p. 116, Eq. (2.48)]), so that for any k ≥ 0, Q k is of degree k and Q k (0) = 0 (or, equivalently, q k is of degree k and q k (0) = 0). Moreover, the zeros of q k (z) are located on the support S of ω.

Proposition 3. For any z ∈ C such that 1/z / ∈ S and any integer k ≥ 1, we have

F (z) -[k -1/k] F (z) = 1 q k (1/z) 2 R q k (u) 2 1 -zu ω(u)du = z 2k Q k (z) 2 R q k (u) 2 1 -zu ω(u)du. (23) 
Proof. Note that q k (u)-q k (1/z) 1-zu is a polynomial in u of degree ≤ k-1. Hence by orthogonality, we have

R q k (u) 2 1 -zu ω(u)du = R q k (u) q k (u) -q k (1/z) 1 -zu ω(u)du = 0 + q k (1/z) R q k (u) 1 -zu ω(u)du = z -k q k (1/z)R k (z)
. This is (23) in a dierent form. 1 We make here a slight abuse of notation, i.e. [k

-1/k] F (z) should be noted [k -1/k] F (z), where 
F (z) := ∞ k=0 m k z k ∈ K[[z]].
A similar argument shows that, more generally, for any integers m, n such that m ≥ n -1 ≥ 0, and any z ∈ C such 1/z / ∈ S, we have

F (z) -[m/n] F (z) = z m-n+1 q n (1/z) 2 R u m-n+1 q n (u) 2 1 -zu ω(u)du.
As we shall see, Eq. ( 23) is important because of the following proposition. For j = 1 or j = 2, we denote by (q j,k ) k≥0 a sequence of orthogonal polynomials with respect to a positive weight ω j with the same properties as above. Proposition 4. Assume that for any u ∈ R we have 0 ≤ ω 1 (u) ≤ ω 2 (u), and that each q j,k is monic. Then for every integer k ≥ 0, we have

R q 1,k (u) 2 ω 1 (u)du ≤ R q 2,k (u) 2 ω 2 (u)du.
Proof. We shall use the following fact (see [5, p. 60]). In the above conditions, let q k denotes the orthogonal polynomial of degree k with respect to ω ≥ 0, and assumed to be monic. Then q k realizes the minimun for the norm in L 2 (R) of the R-linear form p → R p(u)ω(u)du amongst all monic polynomials p(X) ∈ R[X] of degree k. Indeed, for such a polynomial p, there exist k real numbers α

0 , α 1 , • • • , α k-1 such that p(u) = k j=0 α j q j (u), where α k := 1. Then R p(u) 2 ω(u)du = k i=0 k j=0 α i α j R q i (u)q j (u)ω(u)du = k j=0 α 2 j R q j (u) 2 ω(u)du (orthogonality) ≥ R q k (u) 2 ω(u)du (α k = 1).
Now, coming back to the notations of the proposition, since ω 1 ≤ ω 2 , we get for any

k ≥ 0 that R q 1,k (u) 2 ω 1 (u)du ≤ R q 2,k (u) 2 ω 1 (u)du (minimisation of the linear form) ≤ R q 2,k (u) 2 ω 2 (u)du (ω 1 ≤ ω 2 ).
This completes the proof of the proposition.

Proof of Theorem 1

We shall use the following results. For every k ≥ 0, set

W k (z) = k j=0 k + 1 j + 1 k + j + 2 j + 1 z -1 j ,
which is a polynomial of degree k and of the same parity as k. The sequence (W k (z)) k≥0 satisties the orthogonality relations

iR W m (x)W n (x) πx 2 sin 2 (πx) dx =        0 if m = n (-1) m 2i(m + 1)(m + 2) 2m + 3 if m = n. ( 24 
)
See [4, p. 653, Eqs. (2.10) and (2.13)] with the parameters α and γ both set to 1, as well as [START_REF] Prévost | A new proof of the irrationality of ζ(2) and ζ(3) using Padé approximants[END_REF][START_REF] Touchard | Nombres exponentiels et nombres de Bernoulli[END_REF] for further properties.

We now set δ(u)

:= 2π √ ue 2π √ u (e 2π √ u -1) 2 1 [0,+∞) (u) ∈ L 1 (R).
The sequence of monic orthogonal polynomials (T k (z)) k≥0 on [0, +∞) with respect to δ are thus given by

T k (z) = (2k)! 4k+2 2k+1 W 2k (i √ z).
In particular, Eq. ( 24) becomes

∞ 0 T 2 k (u)δ(u)du = (2k + 1)(2k + 2) 4k + 3 • (2k)! 2 4k+2 2k+1 2 , ∀k ≥ 0. ( 25 
)
We recall that α(u) :=

1 e 2π √ u -1 1 [0,+∞) (u) ∈ L 1 (R). Note that the Taylor expansion at t = 0 of ∞ 0 α(u)
1-tu du is Φ(t) by Proposition 1. Let q k (z) be the k-th monic orthogonal polynomial on [0, +∞) with respect to α. We also set Q k (z) := z k q k (1/z). Contrary to the weight δ(u), no explicit expression for the polynomials q k is known, beyond the general formula

q k (z) = (-1) k+1 H k (b 1 ) b 0 b 1 • • • b k . . . . . . • • • . . . b k-1 b k • • • b 2k-1 z k z k-1 • • • 1
given by ( 22) with p = k -1, q = k and b j := (-1) j B 2j+2 2j+2 . However, we will be able to use the polynomials T k in this case as well. Since the zeros of the monic polynomial q k are in [0, +∞), it follows that for any real number t < 0, we have |q k (t)| ≥ |t| k . A simple but crucial observation is that α(u) ≤ δ(u) for every u ≥ 0 because e u ≥ u + 1 for every u ≥ 0. Let now t be a xed negative real number. From the various properties collected in Section 3, in particular Proposition 4, we have

1 q k (1/t) 2 ∞ 0 q 2 k (u) 1 -tu α(u)du ≤ 1 q k (1/t) 2 ∞ 0 q 2 k (u)α(u)du ≤ t 2k ∞ 0 q 2 k (u)α(u)du ≤ t 2k ∞ 0 T 2 k (u)δ(u)du = t 2k (2k + 1)(2k + 2) 4k + 3 • (2k)! 2 4k+2 2k+1 2 .
By Proposition 3, it follows that, for every t < 0,

∞ 0 α(u) 1 -tu du -k -1/k Φ (t) ≤ t 2k (2k + 1)(2k + 2) 4k + 3 • (2k)! 2 4k+2 2k+1 2 .
From (15), we have

Ψ(z) = log(z) - 1 2z - 1 z 2 ∞ 0 α(u) 1 + u/z 2 du, z ∈ D \ iR.
Therefore, for any real number x > 0 and any integers k ≥ 1, n ≥ 0, we have

Ψ(x n ) = log(x n ) - 1 2x n - 1 x 2 n k -1/k Φ - 1 x 2 n + ε k (x n ),
where x n := x + n and

|ε k (x n )| ≤ (2k + 1)(2k + 2) (4k + 3)x 4k+2 n • (2k)! 2 4k+2 2k+1 2 .
The identity

Ψ(x n ) = Ψ(x) + n-1 k=0 1 k + x
completes the proof of the theorem.

Proof of Theorem 2

The proof is very similar to that of Theorem 1, so that we will skip most details. We

recall that β(u) := - √ u log(1 -e -2π √ u )/(2π)1 [0,+∞) (u). Straightforward computations shows that for any u ≥ 0, we have 0 ≤ - √ u log(1 -e -2π √ u ) ≤ √ u e 2π √ u -1 ≤ √ ue 2π √ u (e 2π √ u -1) 2 .
It follows that 0 ≤ β(u) ≤ δ(u) for any u ∈ R, where δ(u)

:= 2π √ ue 2π √ u (e 2π √ u -1) 2 1 [0,+∞) (u) is the weight function used in 4.
We are thus exactly in the same situation as in 4 and by Proposition 3, for every t < 0 and any integer k ≥ 1, we have

∞ 0 β(u) 1 -tu du -k -1/k Ω (t) ≤ t 2k (2k + 1)(2k + 2) 4k + 3 • (2k)! 2 4k+2 2k+1 2 .
The conclusion of Theorem 2 follows from Eq. ( 21) in 2 and B 2 = 1 6 , using similar steps as those in the proof of Theorem 1.

Rational approximations to Euler's constant

Padé approximants can be computed fairly eciently with the ε-algorithm (see [5, Chapter 3, 3.3]); the presence of log(n) in Corollary 1 does not cause any problem because it can also be computed eciently. Nonetheless, we present in this section two dierent ways to obtain sequences of rational approximations to γ from Corollary 1. For simplicity, we set r = 1 throughout this section.

In the rst approach, we use (6) twice with n = a m and n = a m+1 respectively, for some integers a ≥ 2 and m ≥ 0. Both logarithms can then be cancelled by the trivial equation m log(a m+1 ) -(m + 1) log(a m ) = 0, so that letting

ρ m (a) := (m + 1)H a m -mH a m+1 - m + 1 2a m + m 2a m+1 + m + 1 a 2m a m -1/a m Φ (-a -2m ) - m a 2m+2 a m+1 -1/a m+1 Φ (-a -2m-2 ) ∈ Q, we have |γ -ρ m (a)| ≤ (2e) -4•a m (1+o(1)) , m → +∞. (26) 
The speed of convergence in (26) is fast. However, the sequence of denominators of ρ m (a) appears again to tend to ∞ much faster than (2e) 4•a m and it seems that there is no choice of a for which we can deduce from (26) that γ / ∈ Q.

In the second approach, we use [START_REF] Campbell | Les Intégrales eulériennes et leurs applications : étude approfondie de la fonction gamma[END_REF] with n = 2 m for any m ≥ 0. We do not cancel exactly m log(2) as above, but instead we replace log(2) by a suitable Padé approximant to L(z) := log(1 -z) at z = -1 (see [START_REF] Prévost | Legendre modied moments for Euler's constant[END_REF] for a similar idea). We recall the following well-known facts (see [START_REF] Alladi | Legendre polynomials and irrationality[END_REF]). For any integer n ≥ 0, let P n

(z) = 1 n! (z n (1 -z) n ) (n) ∈ Z[z] denotes the n-th Legendre polynomial and Q n (z) = 1 0 Pn(u)-Pn(z) z-u du ∈ Q[z] of degree n -1.
Then, for any z ∈ C such |z| ≤ 1, z = 1, and any integer n ≥ 0, we have

[n/n] L (z) = z n Q n (1/z) z n P n (1/z) and κ n := log(2) -[n/n] L (-1) ≤ ( √ 2 -1) 4n+o(n) , n → +∞. (27) 
We now dene

r m := H 2 m - 1 2 m+1 -m[2 m /2 m ] L (-1) + 1 4 m 2 m -1/2 m Φ (-4 -m ) ∈ Q. Since, as m → +∞, |δ 1,2 m | + κ 2 m ≤ (2e) -2 m+2 (1+o(1)) + ( √ 2 -1) 2 m+2 (1+o(1)) ,
Eqs. ( 6) and ( 27) imply that

|γ -r m | ≤ ( √ 2 -1) 2 m+2 (1+o(1)) , m → +∞.
Again, it does not seem possible to deduce that γ / ∈ Q from this sequence of approximations.

Connection with Apéry's sequences

In [START_REF] Prévost | A new proof of the irrationality of ζ(2) and ζ(3) using Padé approximants[END_REF], the rst author gave a new method to constuct rational approximations to ζ(2) and ζ(3). Surprisingly, doing so, he recovered Apéry's sequences to these numbers and obtained another proof of their irrationality. We now give a quick overview of this construction, which is at the origin of the results of the present paper. This will explain the comment made in the Introduction that the sequence of approximations to γ in Corollary 1 are in some sense analoguous to Apéry's sequences. For any integer s ≥ 2, let

Ψ s (z) = Γ(s) ∞ k=1 1 (k + z) s = ∞ 0 u s-1 e -uz
e u -1 du.

The series converges for any z ∈ C \ Z ≤-1 , while the integral converges for (z) > -1.

Note that the function Digamma function Ψ(z) is a convergent version of the divergent

Ψ 1 (z -1). Let Φ s (z) = ∞ n=0 Γ(n + s -1) n! B n z n+s-1 ∈ Q[[z]].
Note that z 2 Φ(-z 2 ) is essentially equal ( 2 ) to Φ 1 (z), provided the terms n = 0 and n = 1 are removed in the series for Φ 1 (z). Then for any integer s ≥ 2, the function Ψ s (z) admits Φ s (1/z) as asymptotic expansion as z → +∞, z ∈ R. For any integer n ≥ 0, we have

ζ(s) = n k=1 1 k s + 1 Γ(s) Ψ s (n),
which are analogues of γ = H n -Ψ(n + 1). It is then natural to consider the Padé approximants [p/q] Φs (z) and to nd out for which values of the integers p, q ≥ 0, we have

ζ(s) ≈ n k=1 1 k s + [p/q] Φs 1 n . ( 28 
)
It seems dicult to solve this problem, but this was done for s = 2 and s = 3 in [START_REF] Prévost | A new proof of the irrationality of ζ(2) and ζ(3) using Padé approximants[END_REF]. 2 The variable -z 2 instead of z explains why the Padé approximants in this paper are evaluated at -1

n 2
and not 1 n as in [START_REF] Prévost | A new proof of the irrationality of ζ(2) and ζ(3) using Padé approximants[END_REF].

In the case s = 2, let us consider the sequence of Touchard polynomials [START_REF] Touchard | Nombres exponentiels et nombres de Bernoulli[END_REF] Ω k (z) = k j=0 k j k + j j z j , k ≥ 0 which are of degree k and very similar to the polynomials W k (z) introduced in 4; in particular the sequence (Ω k (u)) k≥0 is orthogonal for the weight 1/ sin 2 (πu) for u ∈ - 

(n) = n j=0 n j 2 n+j j and ζ(2) - n k=1 1 k 2 + [n/n] Φ 2 1 n = Ω n (n) -1 √ 5 -1 2 5n+o(n)
, which shows that (28) holds for s = 2 in a strong sense. See also [START_REF]Nombres d'Euler, approximants de Padé et constante de Catalan[END_REF] for another use of the polynomials Ω k (z) to construct rational approximations to Catalan's constant ∞ k=0

(-1) k (2k+1) 2 .
In the case s = 3, let us consider the sequence of polynomials

Π 2k (z) = k j=0 k j k + j j z + j j z j , k ≥ 0.
They are related to Wilson polynomials [START_REF] Wilson | Some hypergeometric orthogonal polynomials[END_REF] and are of degree 2k. The sequence (Π 2k (iu -

)) k≥0 is (essentially) orthogonal for the weight u sinh(πu)/ cosh 

(n) = n j=0 n j 2 n+j j 2 and ζ(3) - n k=1 1 k 3 + [2n/2n] Φ 3 1 n = Π 2n (n) -1 √ 2 -1 4n+o(n) ,
which again shows that (28) holds for s = 3 in a strong sense. Unfortunately, the pattern breaks down for s ≥ 4 because no explicit sequences of orthogonal polynomials are known. However, the method presented in this paper (based on positivity of weights) might apply and we plan to elaborate on the subject in the future, using the weights representations given in [START_REF] Prévost | Remainder Padé approximants for the Hurwitz zeta function[END_REF].

Numerical computations

The rst four Padé approximants 

[k -1/k] Φ (z), k = 1, 2,
2 ) 5n+o(n) and ( √ 2 + 1) 4n+o(n) . This the following questions, where Q n (z) denotes the denominator of [n -1/n] Φ (z), normalized to be monic.

(i) Does there exist a (multiple) hypergeometric sum formula for Q n (z), like for Ω n (z) and Π 2n (z)? (ii) Does the sequence (Q n (z)) n≥1 satisfy a linear recurrence of nite order with coecients in Q[n, z]? (iii) Does the sequence (Q n (-1/n 2 )) n≥1 satisfy a linear recurrence of nite order with coecients in Q[n]? (iv) Is it true that, as n → +∞, log(D n ) ∼ cn 2 log(n) for some constant c > 0? (v) Does the limit of |γ -g 1,r | 1/n exist as n → +∞?

Note that there is no obvious relation between D n and Q n (-1/n 2 ) (which is not an integer) because the numerator of [n -1/n] Φ (z) also contributes to D n when it is evaluated at z = -1/n 2 .

By the theory of orthogonal polynomials (see [5, p. 43, Theorem 2.4]), we know that the sequence (Q n (z)) n≥1 satises a linear recurrence of order 2: its coecients are polynomials in z (of degree 1) but they are not polynomials in n. A negative answer to (ii) would automatically provide a negative answer to (i).

  1 2 +iR. Then z n Ω n (1/z) is the denominator of [n/n] Φ 2 (z) and is related to the sequence of approximations to ζ(2) discovered by Apéry. More precisely, Ω n

	n k=1	1 k 2 + [n/n] Φ 2	1 n

  Then z 2n Π 2n (1/z) is the denominator of [2n/2n] Φ 3 (z) and

	n k=1	1 k 3 + [2n/2n] Φ 3	1 n
	is now related to the sequence of approximations to ζ(3) discovered by Apéry. More
	precisely, Π 2n		

3 

(πu) for u ∈ R.

  3, 4, of the formal series Φ(z)The rst four approximations g 1,n , n = 1, 2, 3, 4, to γ (dened in[START_REF] Prévost | Legendre modied moments for Euler's constant[END_REF]) are (D n ) n≥1 denotes the sequence of denominators of [n -1/n] Φ (-1 n 2 ) (in reduced form). The rst seven values of D n are Numerical computations (made for 1 ≤ n ≤ 180) suggest the existence of a constant c ≈ 1.71 such that log(D n ) ∼ cn 2 log(n). As seen in 7, the respective denominators of [n/n] Φ 2 (z) and [2n/2n] Φ 3 (z) are equal to z n Ω n (1/z) and z 2n Π 2n (1/z), which both satisfy linear recurrences with coecients in Q[n, z]. Moreover, the denominators of the rational numbers [n/n] Φ 2 ( 1 n ) and [2n/2n] Φ 3 ( 1 n )can then be expressed in terms of (but are not exactly equal to) the Apéry sequences with coecients in Q[n], and their respective growth rates are (

	(dened in (3)) are 5 6(10 -z) Ω n (n) = n j=0 n j 2 n+j j of order 2 √ , 20(241z 2 -3990z + 3318) , 7(790 -871z) and Π 2n (n) = n j=0 n j 2 2 n+j j . Both satisfy a linear recurrence
				-39577260671z 2 + 66288226620z -15762446700	
				1260(20169451z 3 -434410620z 2 + 646328298z -150118540)	
	and							
	11 -66121532483928871z 3 + 154759983905137780z 2	
				-68434474957415658z + 6638618337225420	
				/ 2520(162262595834387z 4 -4153727584332260z 3	
				+ 8451860104365678z 2 -3619436689059620z + 347737150997522)
	19 33	,	880221 692890	-log(2),	349922562423851 208805779764540	-log(3),	14082424058723999186111 7172066285428422496860	-log(4)
	66, 346445, 23200642196060, 1793016571357105624215,	
				15228279926117654663108958325260625655928,	
			192235689436727179266849483169227464609368863628487420075870,	
	18288050792990287112994873911376782419504189190149640569292355143723862909911720.

and they already show the quick convergence of the sequence:

|γ -g 1,1 | < 1.46 • 10 -3 , |γ -g 1,2 | < 1.03 • 10 -6 |γ -g 1,3 | < 8.26 • 10 -10 , |γ -g 1,4 | < 6.88 • 10 -13 .

Numerically, it seems that lim n→+∞ |γ -g 1,n | 1/n ≈ 0.00087, which indicates that our bound (given by (

7

))

lim sup n→+∞ |γ -g 1,n | 1/n ≤ (2e) -4 ≈ 0.00114

might not be too far from being optimal.

Let