Semi-supervised fuzzy c-means variants: a study on noisy label supervision - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

Semi-supervised fuzzy c-means variants: a study on noisy label supervision

Résumé

Semi-supervised clustering algorithms aim at discovering the hidden structure of data sets with the help of expert knowledge, generally expressed as constraints on the data such as class labels or pairwise relations. Most of the time, the expert is considered as an oracle that only provides correct constraints. This paper focuses on the case where some label constraints are erroneous and proposes to investigate into more detail three semi-supervised fuzzy c-means clustering approaches as they have been tailored to naturally handle uncertainty in the expert labeling. In order to run a fair comparison between existing algorithms, formal improvements have been proposed to guarantee and fasten their convergence. Experiments conducted on real and artificial data sets under uncertain labels and noise in the constraints show the effectiveness of using fuzzy clustering algorithm for noisy semi-supervised clustering.
Fichier principal
Vignette du fichier
ipmu18.pdf (155.16 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02017485 , version 1 (13-02-2019)

Identifiants

  • HAL Id : hal-02017485 , version 1

Citer

Antoine Violaine, Nicolas Labroche. Semi-supervised fuzzy c-means variants: a study on noisy label supervision. IPMU, Jun 2018, Cadiz, Spain. pp.51-62. ⟨hal-02017485⟩
119 Consultations
175 Téléchargements

Partager

More