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Abstract. Semi-supervised clustering algorithms aim at discovering the
hidden structure of data sets with the help of expert knowledge, gener-
ally expressed as constraints on the data such as class labels or pairwise
relations. Most of the time, the expert is considered as an oracle that
only provides correct constraints. This paper focuses on the case where
some label constraints are erroneous and proposes to investigate into
more detail three semi-supervised fuzzy c-means clustering approaches
as they have been tailored to naturally handle uncertainty in the expert
labeling. In order to run a fair comparison between existing algorithms,
formal improvements have been proposed to guarantee and fasten their
convergence. Experiments conducted on real and artificial data sets un-
der uncertain labels and noise in the constraints show the effectiveness
of using fuzzy clustering algorithm for noisy semi-supervised clustering.

Keywords: fuzzy clustering, label constraints, semi-supervised cluster-
ing, noise

1 Introduction

Semi-supervised clustering algorithms are part of exploratory data analysis.
They intend to extract the underlying structure of datasets by grouping sim-
ilar objects together with the help of some partial external knowledge usually
provided as pairwise constraints [1], e.g. must-link/cannot-link constraints be-
tween pairs of objects that indicate if two objects must (or not) be in the same
cluster, or labels constraints [2], that specify explicitly the class labels for some
objects. These approaches can lead clustering algorithms towards a better def-
inition of the existing structures in the data, or at least to a definition that
better fits the needs of the final user. For clustering algorithms that are directly
derived from the optimization of an objective function, like k-means and its vari-
ants, various methods have been proposed by adding a penalty term [2–4] or by
learning a proper metric [2, 5] that adapts the topology so that less constraints
are violated.

However, all these methods heavily depend on the quality of the provided
expert knowledge. Even in the best case, where only correct constraints are pro-
vided to the algorithms, it has been shown that improperly chosen constraints
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can deteriorate performances [6]. Hence, solutions have been proposed to eval-
uate the quality or the utility of constraints prior to clustering to avoid such
problem [7, 8]. But, to the best of our knowledge, no work has directly tack-
led the problem of semi-supervised clustering when the expert does not provide
relevant constraints.

This paper shows that, in this context of erroneous or uncertain expert la-
beling, it is possible to use the natural property of fuzzy clustering algorithm to
handle uncertainty in constraints to maintain good clustering performances. For
the sake of clarity, this paper is restricted to label constraints since they are more
general than pairwise constraints. The study is also limited to variants of fuzzy
c-means (FCM) that include a term to penalize the solution when label con-
straints are not respected. As such, we discard more complex FCM algorithms
as the kernel-based [9] or those that determine the number of clusters [10, 2].

Without loss of generality, we consider label constraints expressed as a fuzzy
membership matrix Ũ = (ũik) that indicates to which extent each object i is
supposed to be assigned to the cluster k according to the expert. In this case, an
object does not necessarily have constraints and these constraints may not be
completely certain, ie. 0 ≤

∑
k ũik ≤ 1. Table 1 illustrates such matrix Ũ with

4 objects and 3 clusters and introduces the vocabulary that will be used in the
experiments.

Table 1. Example of a constraint membership matrix. Object o1 represents the tra-
ditional seed constraint with a crisp assignment to a single cluster. Object o4 is not
constrained. Objects o2 and o3 show the expressiveness brought by fuzzy representation
of constraints with certain or uncertain / single or multi-labels.

c1 c2 c3
∑

k
ũik Explanations

o1 1 0 0 1 Single-label and certain constraint

o2 0 0.3 0 0.3 Single-label and uncertain constraint

o3 0 0.5 0.5 1 Double-label and certain constraint

o4 0 0 0 0 Unconstrained object

A comparative review on semi-supervised fuzzy c-means algorithms with la-
bel contraints has already been performed in [11]. However, their objective is not
to evaluate the ability of the algorithms to deal with erroneous or noisy expert
labels and the soundness of optimization techniques is not discussed, as a strict
copy of the original algorithms is employed. In this paper, we consider modi-
fied algorithms to conduct a fair comparison that only involves penalty term
employed in FCM for the constraints. To this aim, we ensure and fasten the con-
vergence of the optimization and we introduce the Mahalanobis distance when
it is not already achieved, as a specific and adaptive distance for each cluster is
beneficial for some datasets.

The rest of the paper is then organized as follows. Semi-supervised clustering
algorithms and their modifications are presented Sections 2 and 3. Experiments



Semi-supervised fuzzy c-means variants: a study on noisy label supervision 3

on raw, uncertain and noisy labels are introduced Section 4 and a conclusion is
available Section 5.

2 Semi-supervised clustering algorithms

Let X = {xi, . . .xn} be a dataset composed of n objects such that xi ∈ R
p is

the feature vector representing the object i. The clusters are defined by cen-
troids V = {v1, . . .vc} and d2ik corresponds to the squared Euclidean distance
between the object xi and the centroid vk. The standard fuzzy c-means algo-
rithm minimizes the intraclass inertia by alternatively optimizing the degrees of
membership U = (uik) and the centroids V [12, 13]. The objective function is
the following:

JFCM (U,V) =

n∑

i=1

c∑

k=1

um
ikd

2
ik, (1)

wherem > 1 is a fixed value that controls the degree of fuzziness for the partition
and uik should satisfy:

c∑

k=1

uik = 1; uik > 0 ∀i ∈ {1 . . . n}, ∀k ∈ {1 . . . c}. (2)

Gustafson and Kessel have proposed a variant of FCM that use a specific
Mahalanobis distance for each cluster [13]. The distance between an object xi

and a cluster k becomes d2ik = (xi − vk)
TSk(xi − vk), where Sk is the norm-

inducing matrix of the cluster k. The matrices S1 . . .Sc are defined as fuzzy
covariance matrices and enable to detect the optimal geometrical shapes of the
clusters.

sfcm is a famous algorithm that add a penalty term in the objective function
of FCM to take into account uncertain labels [10] and for which an extension
with Mahalanobis distance already exists [2]. The proposed objective function
minimizes the following criteria such that constraints (2) are respected:

Jsfcm(U,V) =

n∑

i=1

c∑

k=1

um
ikd

2
ik + α

n∑

i=1

c∑

k=1

(uik − ũikbi)
md2ik, (3)

where m > 1 must be an even number, α ∈ R
+ is a coefficient controlling the

tradeoff between the objective function of FCM and the constraints, Ũ = (ũik)
is a partition given by an analyst and bi is such that bi = 1 if xi is constrained
and bi = 0 otherwise.

This paper proposes a simple correction of the update equation of the pro-
totypes V that is similar to what is proposed in [2]:
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vk =

n∑

i=1

α (um
ik + (uik − ũikbi)

m)xi

n∑

i=1

αum
ik + (uik − ũikbi)

m

, ∀k ∈ {1 . . . c}. (4)

ssfcm is the first of the two semi-supervised FCM algorithms proposed in [14].
It minimizes the following objective function:

Jssfcm(U,V) =
n∑

i=1

c∑

k=1

|uik − ũik|
md2ik, (5)

with m ≥ 1 and such that constraints (2) are respected.

The algorithm ssfcm has no coefficient to set for some tradeoff between the
inherent structure of the data and the constraints. Thus, the optimization is
straightforward and the convergence ensured. However, it enforces a total respect
of the constraints and consequently may not be able to deal efficiently with noisy
or erroneous constraints.

In our test, we have proposed an extension of ssfcm with a Mahalanobis
distance following the approach of Gustafson and Kessel [13] to make possible
a fair comparison with the other algorithms when ellipsoidal clusters are to be
found. Learning a Mahalanobis distance comes down to defining a matrix (p×p)
Sk for each cluster k and minimizing the objective function (5) with the respect
to U, V and S = (S1 . . .Sc). In order to avoid trivial solution consisting of Sk

with only zeros that would minimize the objective function, a constant volume
ρk > 0 is assigned to each cluster k:

det(Sk) = ρk, ∀k ∈ {1 . . . c} (6)

The constrained optimization problem is solved by introducing c Lagrange mul-
tipliers λk in Jssfcm:

L = Jssfcm(U,V,S)−
c∑

k=1

λk(ρk − det(Sk)). (7)

Setting the derivative of the Lagragian function to 0 leads to the following result:

Sk = ρk det(Σk)
1

pΣ−1
k ,

Σk =

n∑

i=1

c∑

k=1

|uik − ũik|
m(xi − vk)

T (xi − vk).

esfcm is an entropy regularized FCM [14] with the following objective function:
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Jesfcm =

n∑

i=1

c∑

k=1

uikd
2
ik + λ−1

n∑

i=1

c∑

k=1

(|uik − ũik|) log(|uik − ũik|), (8)

such that λ ∈ R
+ and constraints (2) are respected. In order to minimize

this objective function, the authors remove the absolute value and replace it by
new constraints uik ≥ ũik ∀i ∈ {1 . . . n}, ∀k ∈ {1 . . . c} so that the function is
still convex. As for ssfcm, the update equation of uik depends on ũik which may
limit the way esfcm deals with erroneous constraints. Finally, enriching esfcm
with a Mahalanobis distance is similar to what is performed for FCM.

3 Mapping function

One common problem when evaluating semi-supervised clustering algorithms
based on random initial centers such as FCM, is that the label assigned randomly
to these centers may not coincide with the labels used to express the constraints.
The problem can be solved by taking as initial centers the barycenter computed
with the constrained labeled objects [15]. However, this solution is inappropriate
when there exists clusters without labels or when the constraints set is noisy.

As an exemple, let us consider a dataset with 4 objects and for each object
the following constraints labels: x1 and x2 in cluster 1, x3 in cluster 2 and x4

in cluster 3. Figure 1 presents a dataset with the previous constraints and some
initial centers named v1,2,3. It is obvious to observe that there exists a mismatch
between the clusters, more particularly their centers labels, and the labels of the
constrained objects. For instance, x4 should be in the class 3 but is assigned to
cluster 1. In this case, the convergence of the algorithm to a solution where the
centroid v3 is close to x4 is too expensive compared to a solution where some
constraints are violated which in turn leads to poor results.

Fig. 1. Dataset with three clusters. Symbols ‘+’, ‘o’, ‘x’ correspond to the real classes
whereas stars represent centroids.

To this aim, our mapping function simply considers all pairing of labels be-
tween the one provided by clusters centers and the one provided by the con-
straints and each time performs the complete clustering. The pairing that is
finally kept is the one that minimizes the objective function.
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4 Experiments

This section is devoted to the comparison of sfcm, esfcm, ssfcm as well as skmeans
when possible for several real-world and synthetic datasets. The skmeans algo-
rithm is a semi-supervised clustering method that uses labeled data to improve
a traditional k-means algorithm [15]. We use it as a baseline to show the interest
of using fuzzy approaches in the case of uncertain or noisy supervision. We also
implicitly compare our approach to a traditional FCM as it corresponds to sfcm
without constraints. First, a study of the λ parameter for esfcm is conducted
as its behavior highly depends on this parameter. Next, experiments are carried
out to represent different scenarios where expert annotation can induce errors in
constrained algorithms. In the case of single constraint, the membership degree
provided by the expert can either be wrong (error in the chosen class label), un-
certain (low membership constraint while 1 was expected) or both at the same
time. Finally, in our multi-label scenario, we deal with the case where the expert
may hesitate between two class labels to annotate one object.

4.1 Experimental settings

We selected six well-known datasets from the UCI repository3: Glass, Ionosphere,
Iris, Letters, Vehicle, Wine and a synthetic dataset generated with Gaussians:
GaussK6. Characteristics are available in Table 2. For the Letters dataset, only
the three letters I,J,L are kept as done in [16]. GaussK6 contains 2 overlapped
classes. This dataset, as well as Wine, is suitable for a Euclidean distance whereas
the other datasets offer better results with the Mahalanobis distance.

Table 2. Description of the datasets.

Name GaussK6 Glass Ionosphere Iris Letters Vehicle Wine
n 1200 214 351 150 227 846 178
p 2 8 33 4 16 18 13
c 6 2 2 3 3 4 3

Class sizes 200 / class {163,51} {126,225} 50 / class {81,72,74} {199,217,218,212} {59,71,48}

In order to obtain a fair comparison between the algorithms, the same con-
straints and the same centers initializations have been tested at each experiment.
An experiment consists in 100 trials where 1 trial executes 5 different initializa-
tions of the centers. The final result selected is the one with the minimal objective
function.

In our experiments, our objective is to see how fuzzy clustering algorithms
may help reaching better performances than crisp clustering algorithms when
dealing with uncertain / noisy labels. However, in the end, we are interested
in solving the crisp clustering problem since a decision has to be made about
the class memberships of the objects. For this reason, the evaluation of the

3 Available at http://archive.ics.uci.edu/ml
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accuracy is calculated with the Adjusted Rand Index (ARI) [17] rather than a
specific index related to fuzzy clustering. Moreover, ARI measures the similarity
between two crisp partitions by taking into account the possibility that the
obtained clustering is observed by chance. For fuzzy clustering algorithms, hard
partition was determined by assigning objects to the cluster with the maximum
membership value provided by the final fuzzy partition.

The modified partition coefficient (MPC) [18] has also been calculated to
choose the λ parameter. This validity index measures the fuzziness of a partition:
a crisp partition corresponds to a 1 value and a total fuzzy partition to a 0 value.

4.2 Choice of parameters

For all experiments the exponentm controlling the fuzziness of the final partition
is set to 2.

The α parameter is set in such a way that two terms of the objective function
have the same importance. Then, it gives a balance between the search for an
underlying structure and the respect of the constraints. It is left to future work
to study the influence of this parameter.

The λ parameter is more complicated to set, as it plays a key role on the
behavior of esfcm even without constraints. Thus, experiments were conducted
on esfcm with no partial supervision to set the value of λ. Various λ values have
been tested and both MPC and ARI measures have been calculated.

As a result, we noticed that the MPC value is increasing as the λ value
increases. This comportment is easily explained by the fact that MPC measures
the fuzziness of a partition and λ behaves as a fuzzy controller of the final
partition. Thus, setting a MPC value close to 0.8 assures us to obtain a partition
neither too crisp nor too fuzzy. Nonetheless, we have also observed that the MPC
and ARI measures are not totally correlated, particularly when a Mahalanobis
distance is used. Experiments reported in Table 3 show that, in general, a good
accuracy is reached when MPC is around 0.8.

Table 3. λ values used in esfcm for the average MPC measure around 0.8 and the
average corresponding ARI.

GaussK6 Glass Ionosphere Iris LettersIJL Vehicle Wine

λ 0.14 3.24 2.35 4 0.125 2.5 0.31
MPC 0.80 0.81 0.80 0.80 0.81 0.79 0.80
ARI 0.81 0.37 0.08 0.67 0.22 0.16 0.90

4.3 Comparative experiments

Several experiments are reported in this section depending on the presence or
not of constraints and on the quality of constraints ranging from single-label
(un)certain constraints with added noise, to multi-label (un)certain constraints
to simulate expert annotation errors.
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No constraint First, the algorithms are executed without constraints to es-
tablish a comparative baseline for each dataset. Table 4 illustrates the average
ARI and its 95% confidence interval for skmeans, sfcm, ssfcm and esfcm without
constraints, i.e. k-means, FCM and FCM with an entropy regularization. Since
skmeans has only the possibility to use a Euclidean distance, it cannot be com-
pared to algorithms employing a Mahalanobis distance, hence the missing values
in Table 4.

The sfcm and ssfcm algorithms without constraints, which correspond to
FCM, outperform most of the time esfcm and skmeans. Low values of ARI are
still visible, for example with the Vehicle dataset or the Ionosphere dataset. It
means that the global structure of the data is difficult to detect and requires
background knowledge to help its discovery.

Since we observed that the confidence interval remains stable when con-
straints are introduced, their values are not presented in the next tables.

Table 4. No constraint: average ARI and 95% confidence intervals for each algorithm
and each dataset.

dataset skmeans sfcm ssfcm esfcm

GaussK6 0.80 ± 0.1 0.91 ± 0.1 0.91 ± 0.1 0.78 ± 0.1
Glass / 0.48 ± 0.1 0.48 ± 0.1 0.41 ± 0.2

Ionosphere / 0.46 ± 0.0 0.46 ± 0.0 0.10 ± 0.1
Iris / 0.75 ± 0.0 0.75 ± 0.0 0.68 ± 0.1

Letters / 0.21 ± 0.1 0.21 ± 0.1 0.22 ± 0.1
Vehicle / 0.06 ± 0.0 0.06 ± 0.0 0.16 ± 0.0
Wine 0.82 ± 0.2 0.90 ± 0.0 0.90 ± 0.0 0.90 ± 0.0

Single labels In this experiment, we assume that each constraint is expressed
on a single cluster label with a specific membership value µ. Table 5 describes,
for all the datasets, the performances of the algorithms when µ = 1 (like in any
traditional crisp seed-based semi supervised clustering) or µ = 0.5. Figure 2(a)
depicts the evolution of the ARI varying with the percentage of constraints.
Results with µ = 0.2 are similar to those with µ = 0.5 and thus are not reported.

As expected, when provided contraints are correct, adding constraints enables
the clustering algorithms to improve their accuracies and a membership on the
constraint label equal to 1 achieves better results than a membership equal to 0.5.

As a general manner, esfcm and sfcm outperform the ssfcm algorithm al-
though ssfcm holds better results than esfcm without constraints. As a matter
of fact for ssfcm, constraints are not taken into account to compute the new cen-
ters, reducing indirectly its capacity to take into account an harmonious solution
encompassing both constrained and unconstrained objects.

Single labels with noise Noise effect is studied by randomly modifying the
labels of 20% of the constrained objects so as to produce erroneous annota-
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Table 5. Single label constraints: average ARI for each algorithm and each dataset
containing 30% of single label constraints with membership µ = 1 or µ = 0.5.

µ = 1 µ = 0.5
dataset skmeans sfcm ssfcm esfcm sfcm ssfcm esfcm

GaussK6 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Glass / 0.75 0.56 0.74 0.61 0.47 0.65

Ionosphere / 0.59 0.50 0.46 0.59 0.56 0.44
Iris / 0.92 0.82 0.92 0.87 0.83 0.92

Letters / 0.69 0.39 0.73 0.48 0.33 0.69

Vehicle / 0.48 0.13 0.53 0.31 0.13 0.42

Wine 0.93 0.93 0.91 0.93 0.92 0.92 0.93

tions. In the end, 6% of the constraints are incorrect, 24% have the correct label
and the rest is unconstrained. Table 6 and Figure 2(b) presents, with the same
parametrization as before, the results with misconstrained objects.

Fig. 2. Average ARI and 95% confidence intervals on the Iris dataset as a function of
the percentage of (a) not noisy (b) noisy constraints for sfcm, ssfcm and esfcm. Con-
tinuous lines represent constraints with membership µ = 1 and dotted lines constraints
with µ = 0.5.
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These results show that as a general manner, noisy sets of labels generate
lower quality solutions compared to labels constraints without noise. However,
the sfcm algorithm is still able to reach a better accuracy than FCM (when there
is no constraint). Indeed, sfcm can adjust to which extent it will respect the
constraints. Thus, sfcm has a flexibility to ignore some constraints if it enables
to keep a coherent overall structure. Inversely, esfcm and ssfcm force the total
respect of the constraints, leading to a drop in performances in the presence of
noise.
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Table 6. Single label constraints with noise: average ARI for each algorithm and each
dataset containing 30% of single label constraints with membership µ = 1 or µ = 0.5.
Here 20% of the constraints are mislabeled.

µ = 1 µ = 0.5
dataset skmeans sfcm ssfcm esfcm sfcm ssfcm esfcm

GaussK6 0.84 0.85 0.85 0.84 0.98 0.84 0.84
Glass / 0.55 0.35 0.51 0.67 0.33 0.43

Ionosphere / 0.39 0.34 0.23 0.49 0.38 0.26
Iris / 0.59 0.63 0.55 0.73 0.62 0.54

Letters / 0.45 0.28 0.43 0.38 0.25 0.42

Vehicle / 0.31 0.09 0.38 0.21 0.09 0.33

Wine 0.75 0.75 0.74 0.75 0.87 0.75 0.75

The sfcm algorithm with noisy labels has a better accuracy than FCM in two
situations. The first situation happens when the overall structure of a dataset
is difficult to retrieve without constraints. It is for example the case for Ve-
hicle or Letters, where the ARI without constraints is low. Consequently, the
constraints, even a little noisy, enable to lead the algorithm towards a totally
different solution, improving the accuracy. In the second situation, when con-
straints are uncertain (ie. with membership strictly below 1), it let sfcm more
degrees of freedom to make a choice amongst the constraints in order to preserve
a coherent overall structure.

Double labels In real-life use-case, an other source of erroneous annotations
comes from an expert hesitating between two labels.The following experiment
models such situation by setting for each object a pair of constraints on mem-
bership values for two classes. This pair of values indicates to some extent the
degree of certainty of the expert for these two class labels. We simulate two
distinct cases: one with membership values ξ = (0.5, 0.5) where the expert is
sure that one of the two labels is correct and ξ = (0.2, 0.2) that indicates that
the choice of the expert is not certain.As Glass and Ionosphere datasets only
contains two classes, they are discarded from this experiment.

Table 7 and Figure 3 illustrate the results of both experimentations. Most of
the time, the sfcm algorithm outperforms esfcm and ssfcm. While sfcm works bet-
ter with membership values set to ξ = (0.5, 0.5), esfcm and ssfcm often achieves
higher accuracies with lower membership values. Indeed, sfcm has the ability
to disrespect constraints when the solution moves too far away from a coherent
choice for an overall structure, whereas esfcm and ssfcm are directly incorporat-
ing the constraints membership values in the fuzzy partition.

5 Conclusion

In this paper, we propose to use fuzzy algorithms to handle erroneous or un-
certain expert annotations for the semi-supervised clustering problem. For the
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Table 7. Double labels constraints: average ARI for each algorithm and each dataset
with 30% of constraints with either ξ = (0.5, 0.5) or ξ = (0.2, 0.2).

ξ = (0.5, 0.5) ξ = (0.2, 0.2)
dataset sfcm ssfcm esfcm sfcm ssfcm esfcm

GaussK6 0.99 0.89 0.88 0.99 0.95 0.98
Iris 0.85 0.71 0.67 0.80 0.73 0.71

Letters 0.63 0.32 0.55 0.38 0.30 0.55

Vehicle 0.43 0.10 0.44 0.22 0.11 0.34

Wine 0.92 0.79 0.81 0.92 0.92 0.91

Fig. 3. Double labels constraints: average ARI and 95% confidence intervals as a func-
tion of the percentage of constraints for sfcm, ssfcm and esfcm on the Iris dataset.
Continuous lines represent constraints ξ = (0.5, 0.5) while dotted lines corresponds to
ξ = (0.2, 0.2).
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sake of clarity, we restrict our study to three main fuzzy semi-supervised algo-
rithms. In order to make the comparison fair, each algorithm has been either
corrected or improved with Mahalanobis distance to ensure comparable perfor-
mances on all our test datasets. Moreover, we propose a first mapping function
that solves the mismatch problem that may occur between labels defined by the
initial cluster centers and labels defined in the constraints set. This mapping
function although fully functional needs to be optimized, eventually based on a
Hungarian algorithm.

Several scenarios are introduced to represent the variety of causes of anno-
tation errors by an expert: either a wrong label, a low confidence in the chosen
label or an hesitation between two labels.

We observed that sfcm reaches the more stable results with a good accuracy
and esfcm obtains high accuracies only when labels constraints are certain. The
ssfcm algorithm often does not achieve good performances. Such results can be
explained by the fact that sfcm allows to violate constraints in the final solution
whereas esfcm and ssfcm prohibit this behavior.

In our opinion, the major interest of fuzzy semi-supervised algorithms is their
ability to handle constraints with a degree of certainty. In case of noise, lower-
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ing the labels confidence enables to keep a good improvement of the accuracy
when compared to unsupervised clustering algorithm. A perspective is to inves-
tigate the addition of labels constraints in other soft clustering algorithms, that
generates for instance possibilistic partitions.
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