Integration techniques for surface X-ray diffraction data obtained with a two-dimensional detector
Résumé
Author(s) of this paper may load this reprint on their own web site or institutional repository provided that this cover page is retained. Republication of this article or its storage in electronic databases other than as specified above is not permitted without prior permission in writing from the IUCr. For further information see http://journals.iucr.org/services/authorrights.html Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published. This article proposes two integration methods to determine the structure factors along a surface diffraction rod measured with a two-dimensional detector. The first method applies the classic way of calculating integrated intensities in angular space. This is adapted to work efficiently with two-dimensional data. The second method is based on integration in reciprocal space. An intensity map is created by converting the detected intensity pixel by pixel to the reciprocal space. The integration is then performed directly on this map. A theoretical framework, as well as a comparison between the two integration methods, is provided.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...