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This article proposes two integration methods to determine the structure factors

along a surface diffraction rod measured with a two-dimensional detector. The

first method applies the classic way of calculating integrated intensities in

angular space. This is adapted to work efficiently with two-dimensional data.

The second method is based on integration in reciprocal space. An intensity map

is created by converting the detected intensity pixel by pixel to the reciprocal

space. The integration is then performed directly on this map. A theoretical

framework, as well as a comparison between the two integration methods, is

provided.

1. Introduction
Surface X-ray diffraction (SXRD) is an established powerful

technique for in situ surface and interface structure determi-

nation (Feidenhans’l, 1989; Robinson & Tweet, 1992). SXRD

experiments are mostly performed at synchrotron light

sources with high brilliance, owing to the weak X-ray scat-

tering cross section and small number of surface scatterers.

The surface signal is about one million times weaker than the

bulk signal. Historically, point detectors have been used for

data acquisition, but these are gradually being replaced by the

next generation two-dimensional (or area) detectors, which

come with much higher resolution, lower noise, better

dynamic range and faster acquisition. However, the lack of

knowledge of suitable data acquisition techniques or the

absence of appropriate ex post data analysis methods not only

means that the full advantages of using two-dimensional

detectors may not be realized, but might also lead to misin-

terpretation of the experimental data.

Examples of appropriate analysis of SXRD data acquired

with a two-dimensional detector have been discussed else-

where (Vlieg, 1997; Schlepütz et al., 2005, 2011; Mariager et al.,

2009). This article complements this previous work by

demonstrating some established methods of data acquisition

and data treatment, which exploit the full potential of two-

dimensional detectors. These recipes have been used routinely

at the two surface diffraction beamlines (ID03, BM32) at the

European Synchrotron Radiation Facility and are made

available in the form of plugins (PyMCA integration package;

Solé et al., 2007) and independent software (PyRod; http://

zhoutao.eu/pyrod/).

The foremost difference between a two-dimensional and a

point detector is the extent of spatial information that can be

obtained in a single acquisition. A point detector detects a

small part of the reciprocal space defined by post sample slits

and/or by detector size without additional spatial resolution.

Rocking scans need to be performed in order to obtain the

integrated intensity of a particular reflection. (During a

rocking scan the detector is held fixed while the sample is

rotated around a certain axis, often chosen to be the surface

normal in SXRD experiments.) In general, two-dimensional

detectors have a much larger angular acceptance, and their

spatial resolution is defined by their pixel size. Therefore, it is

possible to obtain an image of the intensity distribution

around a particular reflection in one single acquisition,

provided that the detector acceptance is large enough to

accept the full size of the reflection. In most cases sufficient

information about the peak profile is stored in one image, and

therefore structure factor determination is possible without

performing a rocking scan (Specht & Walker, 1993; Vlieg,

1997). This greatly shortens the acquisition time (up to 100

times). Even when the use of rocking scans becomes inevitable

(e.g. the acceptance of the two-dimensional detector is not

sufficient, which is often the case for lower outgoing angles), a

wide range of data along the rod can be extracted thanks to

the large volume of Q space covered during the scan.

In both cases (single acquisition and rocking scans), one

could choose to reconstruct an intensity map in the reciprocal

space and perform the integration directly. A distinct advan-

tage of this newly proposed approach is that it can be applied

indiscriminately to (a combination of) any type of scan. An

analysis of this concept and its relation to integrated inten-

sities obtained using a point detector will be provided in this

article.

2. Prerequisites

Unless otherwise specified, the diffraction geometry as well as

the associated correction factors described in this article are

those of a Z-axis (six-circle) diffractometer. The measuring
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techniques are available for all kinds of geometries, though

they might bear different names, and the analysis methods can

be easily adjusted to yield similar results.

The convention for a six-circle diffractometer (Vlieg, 1997)

(Fig. 1) is that �in is the incidence angle and �out the outgoing

angle. � is the out-of-plane (of the sample) detector angle, � is

the in-plane (of the sample) detector angle, and ! is the

sample rotation around the axis perpendicular to the surface

or sample azimuth. In the z-axis mode, �in ¼ � and �out ¼ �. h

and k are the in-plane diffraction indices and l is the out-of-

plane diffraction index (often perpendicular to the surface). Q

is the momentum transfer, the difference between the

outgoing and the incoming wavevector Q ¼ Ki � Kf. This is

often defined as the combination of its in-plane and out-of-

plane components, Qk ¼ QX þQY and Q? ¼ QZ in the case

of surface X-ray diffraction.

2.1. Traditional integration of data acquired with point
detectors

In the case of off-specular reflections, the integrated

intensity of an ideal rocking ð!Þ scan (i.e. intensity is recorded

while continuously rotating the sample around its surface

normal) is (Vlieg, 1997, equations 4 and 5)

I!;ideal ¼
�0

!0

� �
A

Au

� �Z Z Z
r2

e Fhkl

�� ��2
PuðQÞ d� d� d!; ð1Þ

where �0 is the incident flux, !0 the rotation speed, re the

classical electron radius, A the active surface area, Au the area

of the surface unit cell, Fhkl the structure factor of the hkl

reflection, P the polarization factor and uðQÞ the line shape

function. Usually an ! scan is discrete and consists of N!

points distributed along the scan path with an acquisition time

of T! for each point,

I! ¼ �0T!
A

Au

� �XN!
i¼1

Z Z
r2

e Fhkl

�� ��2
PuðQÞ d� d��!i: ð2Þ

I! can be eventually rewritten with the following correction

factors (Vlieg, 1997, equation 42):

I! ¼ �0T!
A

A2
u

r2
e�

2 Fhkl

�� ��2
PCareaCdetCbeam

�� cos �

cos� sin � cos �
: ð3Þ

Here Carea is the area correction factor, which is proportional

to the illuminated surface area and is traditionally defined by

the size of the incoming beam parallel to the surface and by

the opening of the slits in front of the detector (Vlieg, 1997).

Cbeam compensates for the intensity distribution profile of the

incoming beam. Cdet is present in the case where the in-plane

acceptance of the detector is not sufficiently large to cover the

entire peak. This will be dealt with in x5. 1=ðcos � sin � cos �Þ is

the Lorentz factor for the ! scan. cos � is the rod interception

factor, which is an integration correction dependent on the

geometry of the rod–detector interception, assuming that

jFhklj is invariant along l within the considered integration

volume:

@ Fhkl

�� ��
@l

’ 0: ð4Þ

In the case of a stationary scan, a single data acquisition of

duration Ts is carried out at a specific point in the reciprocal

space. If we consider the in-plane detector acceptance to be

larger than the cross section of the rod and jFhklj to be

invariant along l within the intersected area, it is reasonable to

assume that with one single acquisition we can collect enough

data to allow calculation of the rod structure factor at the

given l value. The integrated intensity on the detector Is is

Is ¼ �0Ts

A

Au

� �Z Z
r2

e Fhkl

�� ��2
PuðQÞ d� d�

¼ �0Ts

A

A2
u

r2
e�

2 Fhkl

�� ��2
PCareaCdet;sCbeam

1

sin �
; ð5Þ

where 1= sin � is the Lorentz factor for the stationary

measurements (Vlieg, 1997).

As will be shown below, the measuring time can be greatly

reduced by combining rocking scans and stationary measure-

ments to cover complementary parts of the rod (xx3.1 and 3.2).

Concordant results are found in overlapped regions measured

by the two techniques (x3.4). Other approaches include the
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Figure 1
(Top) Graphic representation of the angle convention in real space (in
the reference system of the diffractometer). The incident beam is
confined in the XZ plane, while the sample surface is parallel to the XY
plane. (Bottom) Graphic representation of the angle convention in
reciprocal space. For elastic scattering we have jKij ¼ jKfj. The point O
denotes the reciprocal space origin. A homogeneous crystal truncation
rod is added (black cylinder); the intersection with the Ewald sphere is
illustrated as a deformed ellipse. The sample surface plane is shown as a
grey circle, while the green circle depicts the reciprocal plane Q? ¼ 0.
Also shown is the projected detector acceptance onto the Ewald sphere,
given by Kf�� and Kf��.
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reciprocal space integration, which treats the two types of

scans in an identical way, as will be introduced in x4.
3. Adapted classic approaches

3.1. Stationary scans

Usually, a complete rod intensity profile is measured

through a series of rocking scans at different l values along the

rod. By using two-dimensional detectors, it is possible to

replace each rocking scan by one single stationary measure-

ment centered on the rod at the same l value, thus vastly

speeding up data acquisition. However, certain conditions

must be fulfilled (Fig. 2):

(1) The in-plane projection of the finite acceptance of the

detector expanded by Kf�� sin � and Kf�� should be suffi-

ciently large to fully include the cross section of the rod (Fig. 2,

top). This is not always true as sin � vanishes at � ¼ 0. Hence,

for low l values, one often has to employ a rocking scan (x3.2)

or attempt to compensate for the missing intensity either

analytically or numerically (x5).

(2) jFhklj should be approximately constant over the inter-

sected l range �l (Fig. 2, bottom).

For proper estimation of the background intensity, the field

of view of the detector should be large enough to fully inter-

sect the rod and accept an area with background intensity.

Over (or under)-estimation of the background may result in

significant errors in the calculated structure factors. A quick

and straightforward approach is to first calculate the overall

integrated intensity inside a region of interest (RoI) covering

the intercepted rod and then subtract the background inten-

sity taken elsewhere (Fig. 3).

During the stationary scan, the post sample slits are often

wide open in order to fully accept the rod profile. As a result,

intruder signals (signals coming from outside the sample) may

be found in close vicinity to the peak or even overlapping the

peak, making it impossible to isolate the peak from the

background with a regularly shaped RoI (e.g. rectangle).

Applying an irregularly shaped RoI (e.g. a polygon) can solve

the problem but requires the RoI to be determined for each

image as the peak shape evolves during the scan (see Fig. 5

below). An alternative is to use peak shape determination and
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Figure 2
(Top) Top view of two stationary measurements of the same rod at
different l values. The in-plane projection of the finite acceptance of the
detector is proportional to sin � and thus is smaller for lower l values
(red) than for higher l values (orange). The measurement is only valid if
the projected rectangle is large enough to contain the rod cross section
(small green circle). (Bottom) Perspective view of the same measure-
ments. Integration should only be carried out if the intensity distribution
is approximately uniform along l within the intersected range �l, which
itself is proportional to cos �. The condition is thus generally easier to
fulfill at higher l values (orange) than for lower l values (red).

Figure 3
Different ways of selecting the background: (a) rectangles adjacent to each RoI edge; (b) rectangular area outside the RoI.
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background subtraction employing a two-dimensional peak

search algorithm. Here we apply the ‘seed skewness’ method

described by Sjölin & Wlodawer (1981). Because the size of

the acquired peak profile is dependent on sin�1 � (the Lorentz

factor) and the center of the peak is not necessarily at the

same position for each image taken during the scan, a new

peak search has to be performed for each individual image in

order to correctly locate the peak area. The background is

estimated with the following procedure. (1) For each row of

pixels corresponding to the same Q? value in the reciprocal

space (along the � direction), the background intensities inside

the peak contour are estimated with a normal, Gaussian,

distribution. (2) The parameters of the normal distribution are

calculated using pixels belonging to this row but located

outside the peak contour within a specific range (less than five

pixels away from the peak contour). (3) The background

intensities for each pixel within the peak contour of this row

are then computed numerically with a random normal distri-

bution generator. (4) Finally, the background intensity is

subtracted pixel by pixel before integration.

Fig. 4 shows a simple demonstration of the robustness of the

algorithm when a peak with a very low noise level is consid-

ered. The blue rectangle depicts the RoI for the peak search.

(P1) The black contour indicates the peak area identified by

the peak search routine. (B1) The intensities within the peak

contour are replaced by the background intensities found with

the normal distribution generator. These are then subtracted

during the structure factor calculation. (P2) To further illus-

trate the performance of the background estimation, we

manually impose a smaller peak region. (B2) The calculated

background matches the expected background intensities very

well in the peak region. (P3) A even smaller peak region is

imposed. (B3) Again, the algorithm-estimated background is

in agreement with the expected background. (P4) The peak

search algorithm performs equally well under a nonzero

uniform background which was generated by increasing the

count of each pixel by a certain value. The size of the peak is

very close to that in (P1) and the uniform background is

correctly estimated (B4). (P5) To address a more complex

problem, an artificial rectangular-shaped background is added

to the existing image in order to simulate diffuse intruder

signals coming from outside of the sample. The intense

rectangular-shaped background is now included in the peak

contour as the altered background intensity is higher than the

minimum peak intensity. (B5) This does not affect the calcu-

lation of the structure factor, owing to the correct estimation

of the background intensities in the overlapping area. It

should be noted that this algorithm correctly estimates back-

ground in most cases, such as a linear or a slowly sloping

background. However, caution needs to be taken when the

background is a step function or a fast changing nonlinear

function in the in-plane direction (� direction in Fig. 4).

Apparent vertical streaks in the estimated background images

are an artifact of the row-by-row background determination,

already discussed in the previous paragraph.

Because the lower range of the peak pixel intensities is the

same as the higher range of the background pixel intensities, it

is impossible to find the exact boundary between the peak and

the background areas. Hence, a way of varying the peak

contour in a reasonable manner should be implemented to

allow the user to decide which contour is optimal (Sjölin &

Wlodawer, 1981). In our case, we have implemented an
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Figure 4
A demonstration of the robustness of the peak search algorithm. The intensity is illustrated by false color levels and is in logarithmic scale. In each case a
peak search is performed inside the rectangular-shaped RoI, followed by a background estimation within the same region. The resulting peak is indicated
by the black contour. On the left: the peak found on the original, unmodified image. On the right: the background estimated within the peak contour to
be subtracted pixel by pixel before the final integration.
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adjustment function on the peak contour using binary

morphology techniques such as binary closing, dilation,

erosion and opening (Serra, 1982). It is worth mentioning that,

since the dominating intensities are always included in the

peak region, a reasonable adjustment of the peak contour has

a limited, yet visible, effect on the calculation of the structure

factor.

The complete analysis procedure of stationary l scans,

depicted schematically in Fig. 5, is the following:

(1) For a given (h, k) rod, raw data are collected by

conducting stationary measurements at different l values (�
positions). Note that the position of the measured peak

remains fixed in the detector frame, while its width is stretched

by the Lorentz factor sin�1 �. The shape of the peak is also

slightly rotated as a result of the change in � and � angles of

the detector.

(2) For each image a peak search is performed in order to

locate the peak area, which gradually evolves during the scan.

(3) The background intensities within the peak area are

estimated and subtracted.

(4) Finally, the correction factors are applied to the inte-

grated intensity (see x2). The entire data set is assembled to

compute the jFhklj profile of the rod.

3.2. Rocking scans

A significant part of the rod is measured when performing a

rocking scan, owing to the nonzero out-of-plane acceptance of

the two-dimensional detector (Fig. 6, bottom). The ‘height’,

�l, of this intercepted volume in the l direction is given by

Kf�� cos �, which is Kf�� when the detector approaches the

surface plane (cos � ’ 1). The classic approach for a point

detector is to treat the entire rocking scan for one l value as a

whole as there is no spatial resolution. In the case of a two-

dimensional detector, this would correspond to measurement

with sufficiently closed detector slits or/and use of only one

region of interest during the integration of rocking scan

images, yielding just one structure factor for one rocking scan

at one given l value. This is both inefficient and inaccurate

because, for large out-of-plane acceptance ��, equation (4)

may not be fulfilled. A more appropriate approach consists of

treating data from different images that share the same

l � �l=2 value together. These data, when combined to form

new images, give access to consecutive cross sections of the

diffraction rod, hence allowing us to extract several structure

factors within the entire intercepted �l range. (Fig. 7). The

subsequent treatment consists of a peak search on the newly

formed images, background subtraction, integration and

application of the correction factors. It should be noted that in

this case the correction factors [equation (3)] are different

from those used for a stationary scan [equation (5)].

The complete analysis procedure of the rocking scans,

schematically depicted in Fig. 7, is the following:

(1) For a given (h, k) rod, raw data are collected by

performing an ! scan(s) at one (or multiple) l value(s). Note
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Figure 5
Complete analysis procedure of stationary l scans. The example used here is a (1, 0, l) scan of an Ir(111) sample.
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that the size of the peak remains practically unchanged while

its center drifts within the detector frame during the scan.

(2) For each scan, pixels with the same l values (li; lj; . . .) are

regrouped to form a new image. This yields a series of cross-

sectional views of the rod at different l values. Normally,

instead of generating one new image for every possible l value,

the two-dimensional image data are divided into a number of

slices with thickness �l. A simple summation along the �
direction is then applied to the pixels that fall into (li ��l=2)

to increase the statistical power of each slice. The result of this

operation is a series of newly formed images lying in the �–!
plane.

(3) A peak search is then performed on each newly created

�–! image to locate the peak area. The background intensities

are estimated within the peak area in the same way as in the

case of a stationary scan.

(4) Finally, the correction factors are applied to the inte-

grated intensity (see x2). The entire data set is assembled to

compute the jFhklj profile of the rod.

3.3. Uncertainty

For each calculated structure factor, the associated statis-

tical error has to be estimated, for structure factors calculated

both by directly integrating data acquired in one stationary

measurement and by integrating cross-sectional images

generated from a rocking scan. The statistical error for a linear

background is (Robinson, 1990)

�i ¼ Ii;S þ
Ni;S

Ni;B

Ii;B

� �1=2

; ð6Þ

where Ii;S is the integrated measured intensity within the peak

area, Ni;S is the number of data points (in pixel counts) in the

peak area, Ni;B is the number of data points used for back-

ground estimation and Ii;B is the integrated background

intensity of these points. The statistical errors of the same

equivalent reflections ( j1, j2, . . . , jn) are then used to find the

weighted statistical error of the group �j;stat, which when

combined with the overall systematic error " is often used as a

fair estimation of the uncertainty �j of the calculations (Vlieg,

2012):

�j;stat ¼ 1
. Pn

k¼1

1=�jk

� �1=2

; ð7Þ

�j ¼ �2
j;stat þ "2

� �1=2
: ð8Þ

As previously mentioned, increasing the ‘thickness’ �l when

treating two-dimensional rocking scan data has the effect of

increasing the statistical significance of each slice. This is

illustrated in Fig. 8 (left), where the same rocking scan data are

analyzed by choosing two different �l values. Having a larger

�l increases the raw integrated intensity of each slice, which

leads to a smaller statistical error, as evident from equation (6).

3.4. Comparison between the two approaches

Rocking scans are suitable candidates for replacing

stationary measurements at low l values. When analyzed

properly, the two methods can indeed act complementarily

(Fig. 8, right), leading to faster data acquisition and analysis

time.

3.5. Divergence problem

The divergence problem may be one of the biggest concerns

when using two-dimensional detectors with open post sample

slits (Mariager et al., 2009). This problem arises from the fact

that each pixel of the detector detects photons scattered from

the entire illuminated area at different scattering angles

(Fig. 9). The effect is more pronounced when the incoming

beam is wide and/or when working at low incidence angle

(large incoming beam footprint).

As a result, the measured signal is a combination of scat-

tering from the border and the center of the sample. This can

make interpretation more difficult if the sample is not

homogeneous and/or has a border that scatters very differ-

ently from the center of the sample. One can certainly choose

to limit the detector’s field of view by adding a pair (or

multiple pairs) of anti-diffusion slits, but this does not solve

the divergence problem completely. Besides, closing the slits

restricts the scattered signal to just a small part of the detector,
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Figure 6
(Top) Top view of one measuring point during a rocking scan at low
outgoing angle �. The in-plane projection of the detector acceptance (red
filled rectangle), being proportional to sin �, no longer contains the entire
cross section of the surface rod (small green circle). A full integration
thus requires a series of measurements spread along �!, so that
Qjj�!� 2FWHM of the rod. In reality �! should be much larger to
take into account the inclination of the detector and to measure
background intensities. (Bottom) Side view of the same measuring point.
To increase measurement efficiency, we take advantage of the nonzero
out-of-plane detector acceptance ��. By carefully rearranging the data
acquired with the two-dimensional detector and regrouping those that
correspond to the same l values (l1; l2; . . .), it is possible to reconstruct the
rod intensity profile within the �l range.
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which in turn costs us the advantage of using a large area of

the pixel array. Another disadvantage of adding post sample

slits is that the area correction factor for each pixel needs to be

calculated independently since the area seen by each pixel is

no longer determined by the incident beam’s half-width and its

profile but also by the position and opening of the slits. It is

worth mentioning that the divergence problem will not

significantly affect the integrated intensity in some specific

situations, such as when the peak cross section is smaller than

the detector acceptance and the intensity profile of the rod is

not changing rapidly in the l direction.

A possible solution to the divergence problem is to use

converging Soller slits. In this case, each pixel detects photons

scattered along specific directions from a limited surface area

close to the sample center. This also resolves the border issue.

In practice, instead of having ideal two-dimensional conver-

ging Soller slits one could use a set of two one-dimensional

slits positioned perpendicular to each other (Fig. 10). This has

research papers

J. Appl. Cryst. (2014). 47, 365–377 Jakub Drnec et al. � Integration techniques for SXRD data 371

Figure 8
(Left) Treating rocking scan data with two different slice thicknesses �l. Solid lines: calculated structure factors with statistical error. Dashed lines: the
statistical error alone. (Right) A demonstration of the combination of the two techniques. Two rocking scans cover l ranging from 0.03 to 0.8 and a
stationary measurement covers l from 0.5 to 2.8. The two techniques yield concordant results in the overlapping regions.

Figure 7
Complete analysis procedure of rocking scans using two-dimensional detectors. The example used here is a rocking scan at l ¼ 0:6 of the Ir(111) (1, 0)
rod.
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the advantage of allowing enhancement of the signal by

removing one of the slits when divergence in that direction can

be overlooked. Further analysis will be provided in a future

publication.

4. Reciprocal space integration

In the previous section we analyzed integration methods

already approached by other authors. This part of the article

proposes a new method to integrate images obtained with a

two-dimensional detector, based on the projection of

measured data in the reciprocal space. The main advantage of

this method is that detector images from rocking scans,

stationary l scans or any other kind of scan can be merged and

analyzed together. Subsequently the structure factors Fhkl can

be precisely determined regardless of the diffraction geometry

and without using extra parameters often determined

experimentally. The technique is based on integration in

reciprocal space rather than integration in the angular space of

the diffractometer. The only requirement is the knowledge of

the matrix converting the diffractometer angles to h; k; l
values. This is used to convert the intensity acquired in each

pixel of each two-dimensional detector image taken during the

scan to the reciprocal space intensity map (voxelization). The

integration can then be realized when the map is constructed.

One of the advantages is a better statistical error obtained by

averaging data taken for the same volume of reciprocal space

during the scan (in the case of an image overlap).

The integrated intensity of a given volume in the angular

space of the detector is [Vlieg, 1997, equation (47); Cowley,

1975; Vlieg & Robinson, 1992]

Iint;a ¼ �0Tr

Z Z Z
d�

d�
ðQÞ d� d d’; ð9Þ

where �0 is the incident flux, Tr is the counting time,

ðd�=d�ÞðQÞ is the differential cross section and d� d d’ is

the integration volume. While the integration volume is in the

angular space of the detector, the differential cross section is

expressed in terms of the diffraction vector Q and the inte-

gration must be performed in reciprocal space.

The Lorentz correction, L, accounts for the angular to

reciprocal space volume transformation (Vlieg, 1997),

d� d d’ ¼ ð�3=VuÞL dh dk dl. If we integrate directly in

reciprocal space, the integrated intensity is

Iint;r ¼ �0Tr

Z Z Z
d�

d�
ðQÞ dh dk dl ð10Þ

and

Iint;a ¼
�3

Vu

L Iint;r; ð11Þ

where Vu is the volume of the unit cell. For stationary scans

Iint;a ¼
�2

Au

L Iint;r; ð12Þ

where Au is the area of the surface unit cell. In fact, the

Lorentz correction is included when the pixel intensities of

two-dimensional images are converted to the three-dimen-

sional reciprocal space intensity map.

To find the surface structure, we need to determine the

structure factors from intensities measured along diffraction

rods (Robinson & Tweet, 1992; Feidenhans’l, 1989). Normally,

such integrated intensities depend on the detector acceptance.

The range in l direction, �l, measured by a detector is not a

constant and varies with the component of the scattering

vector perpendicular to the surface (Q?) and the � angle in

the angular space of a detector. This is taken into account with

the cos � rod interception factor in equation (3). However, if

the integration is done directly in reciprocal space, �l can be

chosen to be the same for each l value given that the reciprocal

space map has enough data points. Assuming that �l is small

enough so that ðd�=d�ÞðQÞ is constant within �l we can write

research papers

372 Jakub Drnec et al. � Integration techniques for SXRD data J. Appl. Cryst. (2014). 47, 365–377

Figure 10
The use of two one-dimensional slits positioned perpendicular to each
other to solve the divergence problem and the border issue.

Figure 9
Graphic representation of the divergence problem. Each pixel in the two-
dimensional detector detects photons scattered from a different part of
the sample at different scattering angles, both in plane and out of plane.
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Iint;r ¼ �0Tr

Z Z Z
d�

d�
ðQÞ dh dk dl

¼ �0Tr�l

Z Z
d�

d�
ðQÞ dh dk: ð13Þ

Substituting for
RR ðd�=d�ÞðQÞ dh dk following Vlieg

(1997), we get

Iint;r ¼ �0Tr

A

Au

r2
ejFhklj2PCareaCbeam�l: ð14Þ

In this case �l is a constant. The Cdet correction is omitted

because, as will be shown in the next section, it is possible to

recover the in-plane shape and intensity distribution of the rod

even if the post sample slit width is smaller than the width of

the reflection at the camera distance. The choice of �l and the

determination of the intensity within �l will be discussed in

the example.

4.1. Reciprocal space integration – example

In this section, we will show an example of direct integra-

tion in reciprocal space and explain all of the important steps.

This approach is suitable in cases where diffraction rods are

too wide to fit the detector or accurate Fhkl values at low l are

needed. To get the reciprocal space intensity map, it is

necessary to perform scans that sufficiently sample the desired

volume of reciprocal space. In this example we use a rocking

scan for each l, as this can be easily implemented for all

diffractometer geometries. However, other scan directions are

possible and, in fact, it has been shown that the optimal

sampling can be achieved with scans in the directions

perpendicular to the Ewald sphere (along the Kf directions)

(Mariager et al., 2009; Schlepütz et al., 2011). These scans can

be realized by changing the incoming beam energy or by

moving two or more motors simultaneously. This is not always

practical and may be difficult to implement on some experi-

mental setups.

Pixels from all images measured during the rocking scans

are assigned h; k; l coordinates from the angles � and �
calculated using the �0 and �0 angles of the central pixel, the

pixel size and the detector–sample distance (Schlepütz et al.,

2011; Kriegner et al., 2013). The reciprocal space is divided

into voxels h�, k�, l� of particular size �h, �k, �l. Intensities of

pixels whose h; k; l values are within h� þ �h, k� þ �k, l� þ �l
are averaged and the average value is assigned to the h�, k�, l�
voxel. In other words, in this step we perform intensity aver-

aging from all of the images to obtain the mean intensity of the

h� þ �h, k� þ �k, l� þ �l volume of reciprocal space. The

maximum resolution of the reciprocal space map is achieved

when the voxel size is close to the size of the pixel projected in

reciprocal space. An example of a resulting reciprocal space

map is shown in Fig. 11.

Ideally the choice of �l in equation (14) would be the voxel

size �l in the reciprocal space map. However, this is not always

convenient because the reciprocal map might lack the in-plane

resolution for proper integration. Therefore, in order to get in-

plane structure factors Fhkl, we may need to further average

voxels in the range �l>�l for a given h�, k�, l�, assuming a

constant Fhkl within �l. �l is typically determined by the

features in the diffraction rod. This step is in fact an in-plane

projection and averaging of Fhkl in the �l interval. Such

projections for a crystal truncation rod (CTR) are shown in

Fig. 12 for low and high l values.

In most cases these projection images can now be integrated

directly and, after applying the necessary corrections (Carea,

Cbeam), Fhkl values can be calculated according to equation

(14). The polarization corrections are applied to each pixel

before voxelization.

Fig. 12(a) immediately shows one of the drawbacks for Fhkl

determination at low l values. If the rocking scans are not

performed with a small enough �! interval, some of the in-

plane voxels are not assigned any intensity value after the

projection because the rod is almost tangent to the Ewald

sphere (detector parallel to the rod). This can be overcome by

interpolation or peak fitting as will be shown later. At higher l

values, the angle of the detector relative to the rod is higher,

and therefore, for each image in the rocking scan, the Ewald

sphere intersects the whole diameter of the rod and there are

no unassigned voxels after the projection.

Background subtraction can be done in two ways: (i) on the

projection images or (ii) from the side images of the rocking

curve. In the first case the background is subtracted, as

described in the previous section, by choosing the appropriate

area on the projection image. In the second case we take the

images from the rocking scan that do not intercept the rod (on
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Figure 11
Reconstruction of a surface rod in reciprocal space [ð2

3 ; 0; lÞ rod of a CsO
layer adsorbed on Pt(111)]. The reciprocal intensity map was recon-
structed from rocking scans taken at different l. For this particular rod we
used dense sampling in proximity to the rod (depicted as a deformed
cylinder) and fewer images were taken in the background region.
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the side of the rod), average them and directly subtract them

from all the images of the rocking scan. The projection is then

made from background-subtracted images. This method has

some inherent advantages. First, we have better background

averaging as it is taken from multiple images. Second, the

background originating from other parts of the experimental

setup than the sample can also be easily subtracted. The main

disadvantage is possible subtraction of other diffraction

features (rings, Bragg peaks from the beryllium dome or mis-

oriented crystallites) which interfere on the background images.

The summary of the analysis by integration in reciprocal

space is depicted in Fig. 13:

(1) For a given (h, k) rod, raw data are collected by

performing rocking scans at different l values.

(2) Each pixel on each image is assigned h, k, l values of

reciprocal space using the orientation matrix, and the polar-

ization correction, P, is applied. Then the reciprocal space map

is constructed.

(3) Voxels can be further averaged along the l direction

assuming @jFhklj=@l ’ 0 and in-plane projection images are

created.
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Figure 13
Summary of the integration in reciprocal space: rocking scans at various l values are taken (1), a reciprocal space map is constructed (2), lconst (in-plane)
projections are integrated or interpolated and then integrated (3), and jFhklj is determined (4).

Figure 12
The projected intensity for a ð1; 0; lÞ CTR with l ¼ 0:45 (a) and l ¼ 2:65 (b) [clean Pt(111), log scale].

Figure 14
Image with the maximum intensity in the rocking curve [ð2

3 ; 0; lÞ surface
rod of a CsO layer on Pt(111) measured at l ¼ 2:40]. Intensity is in log
scale.
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(4) lconst (in-plane) projection images are either directly

integrated or first interpolated and then integrated (see next

section). The jFhklj values are determined for a set of l values.

5. Detector acceptance problem

As mentioned in the previous section, even in cases when we

have incomplete information about the in-plane rod profile, it

is possible to obtain correct jFhklj values. Analytical methods

of peak restoration for data acquired by a point detector have

already been discussed at length (Robach et al., 2000) and

further demonstrated on analysis of the 2N reconstruction of

the Ge/Si(001) wetting layer (Zhou et al., 2011). For data

acquired by two-dimensional detectors the reciprocal space

integration approach is more appropriate, since we have a

clearer view of the exact peak shape. It should be noted that

the data restoration approaches are the last resort solution

and proper data acquisition is strongly recommended.

Let us take as an example a surface reconstruction rod

scattered from a CsO layer adsorbed on a Pt(111) surface. In

the following we use a reciprocal lattice based on the surface

Pt(111) unit cell. One image of the ð2
3 ; 0; lÞ rod interception at

l ¼ 2:40 taken during the rocking scan is shown in Fig. 14.

There are no particular features visible and the signal could

be wrongly assigned as background. However, if we make a

projection of the rocking scan, a wide rod is apparent

(Fig. 15a). Even in this case, the active part of the detector

does not completely intercept the whole diameter of the rod

and some extrapolation method is needed to find the total

intensity of the reflection.
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Figure 15
(a) The in-plane projection of the rocking curve [ð2

3 ; 0; lÞ surface rod of a CsO layer on Pt(111) measured at l ¼ 2:40]. (b) Lorentzian fit of the in-plane
projection. Intensity is in log scale.

Figure 16
(a) The in-plane projection of the rocking curve [ð2

3 ; 0; lÞ surface rod of a CsO layer on Pt(111) measured at l ¼ 0:45]. (b) Lorentzian fit of the in-plane
projection. Intensity is in log scale.
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In the example, the rod is fitted by a two-dimensional

Lorentzian surface (Fig. 15b) and the intensity is calculated

from the parameters of the fit. The same procedure can be

applied for the projection of the same rod at l ¼ 0:45

(Fig. 16a), where the �! spacing between images taken during

the rocking scan is insufficient to allow direct integration of

the projection image.

Fig. 16(b) shows the Lorentzian two-dimensional fit that

was used for intensity determination. It should be noted that

fitting two-dimensional Lorentzian surfaces to incomplete

projections is only one method and other interpolation/

extrapolation techniques can also be used.

Fig. 17 shows a comparison of different integration methods

for a CTR. In this case the width of the rod intersection is

smaller than the acceptance of the detector and the whole rod

signal is contained in the detector for sufficiently high l values.

The blue line in Fig. 17 shows the structure factors obtained

by the direct integration of stationary scan images (x3.1). The

green curve is the reciprocal space integration of the rocking

scan projection images (Fig. 12). The structure factors deter-

mined by fitting Lorentzian two-dimensional peaks on

projected images and by simple interpolation of projected

images are shown as red and violet curves, respectively. From

the comparison we can directly conceive that the difference

between curves is minimal for most of the l values, as expected

after proper treatment of the data. The main difference is at

low l values where the structure factor values are expected to

be underestimated for non-extrapolated images and for direct

integration. Interestingly, the difference at low l values

between fitted and extrapolated jFhklj values is also quite large

and in general depends on the quality of the interpolation

algorithm. Small differences are also seen in the red curve. It is

slightly shifted upwards as the CTR is not perfectly Lorent-

zian, and by fitting the Lorentzian shape the intensity is

systematically overestimated. Also the bottom of the rod is

flatter, but we did not observe the same rod flattening for

other rods measured on the same crystal. In conclusion, the

Lorentzian fitting needs to be used with caution and perhaps a

different mathematical description of the peak shape or

interpolation can give better results.

The same comparison of different integration techniques is

also shown for a surface rod with a large angular width

(Fig. 18).

In this case the advantage of Lorentzian fitting is more

obvious. Fig. 18 shows a comparison between the direct space

integration of stationary scan images (blue curve), the reci-

procal space integration of the rocking scan projection images

(green curve) and two different interpolation methods in

reciprocal space (red and violet). Because insufficient infor-

mation has been obtained on the images during the stationary
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Figure 17
Comparison between different analysis methods: direct space integration,
reciprocal space integration, Lorentzian fit in reciprocal space and
interpolation in reciprocal space. [ð1; 0; lÞ rod of clean Pt(111).]

Figure 18
Comparison between different analysis methods when applied to a
surface rod: direct space integration, reciprocal space integration,
Lorentzian fit in reciprocal space and interpolation in reciprocal space.
[ð2

3 ; 0; lÞ rod of a CsO layer on Pt(111).]

Figure 19
Comparison of Lorentzian fits (top) and interpolations (bottom) in
reciprocal space when half of the total number of images in the rocking
scan have been removed. [ð2

3 ; 0; lÞ rod of a CsO layer on Pt(111).]
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scan (Fig. 14), the direct space integration curve shows no

particular modulation, and Fhkl values obtained in this way can

lead to a wrongly determined structure and should not be

used. When we integrate projected intensities in reciprocal

space (example in Fig. 15a), the curve has already a more

reasonable profile (green curve). However, when we fit a two-

dimensional Lorentzian on projections or interpolate the

images, the Fhkl profile clearly shows modulation characteristic

for a rod of a very thin layer (red and violet). The reason for

the lack of modulation of the green curve is that the in-plane

reciprocal mapping is incomplete, particularly at low l values

(Fig. 16), and interpolation is needed for proper integration.

The regularity of the Lorentzian fitting (top plot) and

interpolation (bottom plot) is assessed in Fig. 19. First, all of

the frames in the rocking scans were used to make the h, k

projections for fitting and interpolation (blue and green).

Then, half of the images were removed from the data set (red

and violet). As the number of the frames used in making the

projections decreases, the fitting error increases because fewer

voxels in reciprocal space are assigned an intensity. Never-

theless, the overall shape of the rod is still similar without any

major differences. This figure points to the good reliability and

robustness of the interpolation routines. We mainly use

Lorentzian fitting or interpolation for rods that have large

angular width or for measurements at low l values where the

in-plane reciprocal space mapping is not sufficient.

6. Conclusions

This article provides a framework to analyze surface X-ray

diffraction data obtained with a two-dimensional detector. We

show that the use of such a detector, together with a proper

analysis method, can speed up the data acquisition signifi-

cantly and provides accurate structure factors even at low l

values.

Two main approaches were proposed for the analysis. The

first approach relies on angular space integration of two-

dimensional images, while the second is based on integration

in reciprocal space. In most cases, stationary scans are suffi-

cient to properly determine jFhklj. However, at low l values,

rocking scans are necessary for correct integration. On the

basis of the above, the best approach is to take rocking scans

for low l values and a stationary scan for higher l values for

each diffraction rod.

Analysis methods of such scans were proposed in xx3.2 and

4. If the detector acceptance is smaller than the width of a

reflection, extrapolation of reciprocal space map projections

gives accurate jFhklj values (x5). Although integration in

reciprocal space is a more universal approach, the integration

in direct space is sufficient in many cases and does not require

extensive programming and computational power. A

summary is given in Table 1.
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Cryst. 33, 1006–1018.

Robinson, I. (1990). Handbook on Synchrotron Radiation, Vol III.
Amsterdam: Elsevier.

Robinson, I. & Tweet, D. (1992). Rep. Prog. Phys. 55, 599–651.
Schlepütz, C. M., Herger, R., Willmott, P. R., Patterson, B. D., Bunk,
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Table 1
Comparison between different integration methods and data acquisition techniques.

Angular space integration Reciprocal space integration Stationary scan Rocking scan

Pros Traditional approach, rapid implementation Universal technique, Lorentzian corrections not needed Fast acquisition Low l values
Cons Lorentzian corrections need to be determined for each

diffractometer geometry and each type of scan
Computationally intensive High l values only Slow acquisition
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