On The Mean Field limit for Cucker-Smale models - Archive ouverte HAL
Article Dans Une Revue Discrete and Continuous Dynamical Systems - Series B Année : 2021

On The Mean Field limit for Cucker-Smale models

Résumé

In this note, we consider generalizations of the Cucker-Smale dynamical system and we derive rigorously in Wasserstein's type topologies the mean-field limit (and propagation of chaos) to the Vlasov-type equation introduced in [12]. Unlike previous results on the Cucker-Smale model, our approach is not based on the empirical measures, but, using an Eulerian point of view introduced in [8] in the Hamiltonian setting, we show the limit providing explicit constants. %Using an Eulerian point of view introduced in \cite{gmp} in the Hamiltonian setting, we don't use empirical measures and provide explicit constants. Moreover, for non strictly Cucker-Smale particles dynamics, we also give an insight on what induces a flocking behavior of the solution to the Vlasov equation to the - unknown a priori - flocking properties of the original particle system.
Fichier principal
Vignette du fichier
gencuckersmalefinalcor5.pdf (373.75 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02008699 , version 1 (05-02-2019)
hal-02008699 , version 2 (09-08-2020)
hal-02008699 , version 3 (26-08-2020)
hal-02008699 , version 4 (25-11-2020)
hal-02008699 , version 5 (05-02-2021)

Identifiants

Citer

Roberto Natalini, Thierry Paul. On The Mean Field limit for Cucker-Smale models. Discrete and Continuous Dynamical Systems - Series B, In press, ⟨10.3934/dcdsb.2021164⟩. ⟨hal-02008699v5⟩
338 Consultations
239 Téléchargements

Altmetric

Partager

More