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Introduction

The Cucker-Smale model [START_REF] Cucker | On the mathematics of emergence[END_REF][START_REF] Cucker | Emergent behavior in flocks[END_REF] is a particles system which exhibits the so-called flocking phenomenon, namely the dynamical property of alignment of all the velocities and gathering of all the positions asymptotically when the time of evolution diverges. Its study has developed an intense activity these last years, see for example the intensive bibliography in the recent paper [START_REF] Ha | Uniform stability of the Cucker-Smale model and applications to the mean-field limit[END_REF].

It consists in the following vector field on R 2dN

(1)

   ẋi = v i vi = 1 N N j=1 ψ(x i -x j )(v j -v i ). x i , v i ∈ R d , i = 1, . . . , N
where ψ : R d → R is a bounded Lipschitz continuous positive nonincreasing function.

Associated to [START_REF] Ambrosio | Gradient Flows in Metric Spaces and in the Space of Probability Measures[END_REF], the following Vlasov type kinetic equation on R 2d was introduced in [START_REF] Ha | From particle to kinetic and hydrodynamic descriptions of flocking[END_REF]:

(2) ∂ t ρ t (x, v) + v • ∇ x ρ t (x, v) + ∇ v • ρ t (x, v) R 2d
ψ(x -y)(v -w)ρ t (y, w)dydw = 0. So far the kinetic non-linear equation [START_REF] Bolley | Stochastic Mean-Field Limit: Non-Lipschitz Forces & Swarming[END_REF] has been derived in a Lagrangian point of view, i.e. by following the trajectories solving the vector field [START_REF] Ambrosio | Gradient Flows in Metric Spaces and in the Space of Probability Measures[END_REF] in the so-called empirical measure [START_REF] Cañizo | A well-posedness theory in measures for some kinetic models of collective motion[END_REF] Π (x 1 ,...,

x n ;v 1 ,...,v N ) (x, v) := 1 N N i=1 δ(x -x i )δ(v -v i ).
Indeed, let Φ t be the flow generated by the system (1) and let us define (4) Π t (x 1 ,...,x n ;v 1 ,...,v N ) := Π Φ -t (x 1 ,...,x n ;v 1 ,...,v N ) .

One shows easily that Π t (x 1 ,...,x n ;v 1 ,...,v N ) (x, v) solves (2) for each N . This point of view follows directly the Dobrushin way [START_REF] Dobrushin | Vlasov equations[END_REF] of deriving the Vlasov equation for the large N limit of Hamiltonian vector fields. The Cucker-Smale model [START_REF] Ambrosio | Gradient Flows in Metric Spaces and in the Space of Probability Measures[END_REF] and its Vlasov type associated equation [START_REF] Bolley | Stochastic Mean-Field Limit: Non-Lipschitz Forces & Swarming[END_REF] have been extensively studied in [START_REF] Ha | Uniform stability of the Cucker-Smale model and applications to the mean-field limit[END_REF] and we quote the following of their results: the function ψ is supposed to be positive, bounded, uniformly Lipschitz continuous and nonincreasing.

(1) the solutions of (1) satisfy for all t sup i,j≤N

x i (t) -x j (t) ≤ C and sup i,j≤N

v i (t) -v j (t) ≤ e -Dt
where C and D are two positive constants depending only on sup i,j≤N x i (0) -x j (0) and sup i,j≤N v i (0) -v j (0) .

(2) let Π (x 1 ,...,x n ;v 1 ,...,v N ) → µ(0) as N → ∞, then lim N →∞ sup t∈R W p (Π t (x 1 ,...,x n ;v 1 ,...,v N ) -µ(t)) = 0 where W p is the Wasserstein distance of exponent p ∈ N (see definition in Remark 3.5 below). (3) Let R 2d dµ(0) = 1, R 2d vdµ(0) =: v, R 2d v 2 dµ(0) < ∞. Then, for some E, F > 0 and every p, v -v p dµ(t)

1 p ≤ Ee -F t .
Recently, a more Eulerian way of deriving the Vlasov equation associated to Hamiltonian vector fields was introduced ( [START_REF] Golse | On the Mean-Field and Classical Limits of Quantum Mechanics[END_REF], after [START_REF] Golse | Empirical measures and Vlasov hierarchies[END_REF]). It consists in considering the movement of a generic particle solution to the Liouville equation associated to an Hamiltonian system, rather than considering the empirical measure associated to the Hamiltonian flow. Transposed in the (non Hamiltonian) present situation, the method leads to the following.

We will consider the pushforward 1 by the flow Φ t associated to (1) of a compactly supported, symmetric by permutations of the variables N -body probability density ρ in N on phase space R 2dN .

In order to describe the movement of a "generic" particle in the limit of diverging number of particles, we want to perform an average on the N particles but one. This means that we consider the first marginal of ( 5)

Φ t #ρ in N := ρ t N that is (6) ρ t N ;1 (x, ξ) := R 2(d-1)N ρ t N (x, ξ, x 2 , ξ 2 , . . . , x N , ξ N )dx 2 dξ 2 . . . dx N dξ N .
Then, when ρ in N is factorized as ρ in N = (ρ in ) ⊗N , where ρ in is a probability measure on R 2d , we will prove that the marginal of ρ t N tends, as N → ∞, to the solution of the effective non-linear Vlasov type equation [START_REF] Bolley | Stochastic Mean-Field Limit: Non-Lipschitz Forces & Swarming[END_REF] 

with ρ t=0 = ρ in ∈ L 1 (R 2d , dxdv).
In fact, we can prove (see Remark 3.5 below) that the marginals at every order n of ρ t N as defined by (7)

ρ t N ;n (x 1 , ξ 1 , . . . , x n , ξ n ) := R 2d(N -n) ρ t N (x i , ξ 1 , x 2 , ξ 2 , . . . , x N , ξ N )dx n+1 dξ n+1 . . . dx N dξ N ,
tend, in Wasserstein topology of any exponent p ≥ 1, to the nth tensorial power of the solution ρ t of the Vlasov equation, i.e. ρ t N ;n → (ρ t ) ⊗n . Nevertheless, for sake of clarity of this short note, we will present in detail only the case n = 1.

This result (for n = 1), i.e. Theorem 2.2 below, has to be put in correspondence with the item 2 of the results of [START_REF] Ha | Uniform stability of the Cucker-Smale model and applications to the mean-field limit[END_REF] just described, but there are several differences. First, our results hold true for more general initial data than the empirical measures. Second, our result will not be uniform in time as in item 1. Third, we will get an explicit rate of convergence in the asymptotic N → ∞.

Our methods will also apply to systems of the general form (8)

   ẋi = v i vi = 1 N N j=1 γ(x i -x j , v i -v j ) x i , v i ∈ R d , i = 1, . . . , N,
where γ(x, v) : R 2d → R d is a Lipschitz continuous function, bounded in (x, v), Corollary 2.5 or bounded in x and sublinear in v, Theorem 2.4 and Corollary 2.6.

1 We recall that the pushforward of a measure µ by a measurable function Φ is Φ#µ defined by ϕd(Φ#µ) := (ϕ•f )dµ for every measurable function f .

In the following, we will denote by Lip(γ) (x,v) the (local) Lipschitz constant of γ at the point (x, v) ∈ R 2d and we will suppose, without loss of generality, that there exists

γ 0 > 0 such that, for all (x, v) ∈ R 2d , γ(x, v) ≤ γ 0 |v| Lip(γ) (x,v) ≤ γ 0 |v| where | • | denotes the Euclidean norm on R d .
We will show in Appendix A the gobal existence of the solutions to [START_REF] Golse | On the Mean-Field and Classical Limits of Quantum Mechanics[END_REF], with an exponential growth in time with respect to the initial conditions. Of course, uniqueness is a consequence of (the iteration in time of) the Cauchy-Lipschitz Theorem.

The Cucker-Smale vector fields satisfies this assumptions with γ 0 = ψ L ∞ . Note that the following Vlasov type kinetic equation on R d is obviously associated to [START_REF] Golse | On the Mean-Field and Classical Limits of Quantum Mechanics[END_REF], in a natural way:

(9) ∂ t ρ t (x, v) + v • ∇ x ρ t (x, v) + ∇ v • ρ t (x, v) R 2d γ(x -y, v -w)ρ t (y, w)dydw = 0.
Let us immediately notice that our assumptions on γ contain the two assumptions in Theorem 2.3 in [START_REF] Piccoli | Control to flocking of the kinetic Cucker-Smale model[END_REF]. The first one because of the Lipschitz and sublinearity properties of γ, and the second one thanks to the fact, see [START_REF] Villani | Topics in Optimal Transportation[END_REF][START_REF] Villani | Optimal Transport. Old and New[END_REF], that sup

| Lip(ϕ)|≤1 | ϕ(µ -ν)| ≤ W 1 (µ, ν)
where W 1 is the Wasserstein distance of exponent 1, as defined in Remark 3.5 in the present paper. Therefore, thanks to the results of [START_REF] Piccoli | Control to flocking of the kinetic Cucker-Smale model[END_REF] (see also [START_REF] Cañizo | A well-posedness theory in measures for some kinetic models of collective motion[END_REF]), there exists a unique continuous solution to [START_REF] Golse | On the derivation of the Hartree equation in the mean field limit: Uniformity in the Planck constant[END_REF] in C 0 (R, P c (R 2d )), where P c (R 2d ) is the space of compactly supported probability measures on R 2d .

Our last result, Theorem 2.7 and Remark 2.8, gives an insight of the "inverse problem" of the mean-field limit in the case where the solution to the Vlasov kinetic equation (9) exhibits a flocking behavior of the form (12) below, without any knowledge concerning the flocking behavior of the original particles system. Namely, when the support of the solution to the Vlasov equation remains of finite size in the variable x and reduces asymptotically exponentially in time to a single point in the momentum variable v, we prove an approximate similar behavior for all the marginals of initial distributions pushforwarded by the N -body dynamics, for N large enough.

Let us finish this introduction by quoting very few references among the huge number of works dedicated to the rigorous derivation of the mean-field limit of particles systems, after the pioneering work [START_REF] Dobrushin | Vlasov equations[END_REF] already mentioned: [START_REF] Sznitman | Topics in propagation of chaos[END_REF][START_REF] Bolley | Stochastic Mean-Field Limit: Non-Lipschitz Forces & Swarming[END_REF][START_REF] Jabin | Quantitative estimates of propagation of chaos for stochastic systems with W -1, ∞ kernels[END_REF] for stochastic systems and using empirical measures, [START_REF] Ha | A simple proof of Cucker-Smale flocking dynamics and mean-field limit[END_REF][START_REF] Ha | Uniform stability of the Cucker-Smale model and applications to the mean-field limit[END_REF] (already mentioned) specifically for the Cucker-Smale model and using empirical measures too, [START_REF] Golse | Empirical measures and Vlasov hierarchies[END_REF][START_REF] Golse | On the Mean-Field and Classical Limits of Quantum Mechanics[END_REF] (already mentioned too) for globally Lipschitz forces, [START_REF] Jabin | Mean Field limit and propagation of chaos for Vlasov systems with bounded forces[END_REF] for rough but bounded forces and finally [START_REF] Golse | On the derivation of the Hartree equation in the mean field limit: Uniformity in the Planck constant[END_REF] for a derivation using the full hierarchy of equations satisfied by the marginals, for Hamiltonian systems with analytic potentials.

The results

In this section we will state our main results, but let us start by recalling the definition of the second order Wasserstein distance W 2 (see [START_REF] Ambrosio | Gradient Flows in Metric Spaces and in the Space of Probability Measures[END_REF][START_REF] Villani | Topics in Optimal Transportation[END_REF][START_REF] Villani | Optimal Transport. Old and New[END_REF]). Definition 2.1 (quadratic Wasserstein distance). The Wasserstein distance of order two between two probability measures µ, ν on R m with finite second moments is defined as

W 2 (µ, ν) 2 = inf γ∈Γ(µ,ν) R m ×R m |x -y| 2 γ(dx, dy)
where Γ(µ, ν) is the set of probability measures on R m × R m whose marginals on the two factors are µ and ν.

That is to say that elements γ of Γ(µ, ν), called couplings or transportation maps or transport maps or just maps, depending of the authors, satisfy, for every test functions

a and b in C 0 (R d ), R 2m a(x)γ(dx, dy) = R m a(x)µ(dx), R 2m b(y)γ(dx, dy) = R m b(y)ν(dy).
The symmetry property in µ, ν is obvious and the separability property is easily proven by taking the optimal coupling between µ and itself equal to [START_REF] Ha | Uniform stability of the Cucker-Smale model and applications to the mean-field limit[END_REF] γ = µδ(x -y).

Conversely, if W 2 (µ, ν) 2 = 0, then R m ×R m |x -y| 2 γ(dx, dy) = 0
for some γ so that x = y γ a.e. and, for every Borel function ϕ,

ϕ(x)µ(dx) = ϕ(x)γ(dx, dy) = ϕ(y)γ(dx, dy) = ϕ(y)ν(dy) ⇒ µ = ν.
The proof of the triangular inequality is much more involved, see again [START_REF] Ambrosio | Gradient Flows in Metric Spaces and in the Space of Probability Measures[END_REF][START_REF] Villani | Topics in Optimal Transportation[END_REF][START_REF] Villani | Optimal Transport. Old and New[END_REF].

We can now state the main result of this note, proven in Section 3.4.

Theorem 2.2 (Cucker-Smale model).

Let Φ t be the flow generated by the system (1), ψ bounded positive nonincreasing Lipschitz continuous, and let ρ t be the solution to [START_REF] Bolley | Stochastic Mean-Field Limit: Non-Lipschitz Forces & Swarming[END_REF] 

with an initial condition ρ in ∈ L 1 (R 2d ) compactly supported.
Let moreover ρ t N ;1 be the first marginal of ρ t N := Φ t #(ρ in ) ⊗N , as defined in [START_REF] Dobrushin | Vlasov equations[END_REF].

Then, for all N > 1, t ∈ R, W 2 (ρ t N ;1 , ρ t ) ≤ 4 ψ 2 ∞ (2|v| + |supp[ρ in ]|) e Lt -1 L 1 2 N -1 2 with L := 2(1 + 8 ψ 2 ∞ v 2 L ∞ (supp[ρ in ]) ) and v = vρ in dxdv, where v L ∞ (supp[ρ in ]) := sup (x,v)∈supp[ρ in ]
|v|.

Remark 2.3. There exists an equivalent result for higher orders marginals of ρ(t) and other Monge-Kantorovich distances but we prefer in this note to concentrate on the case of first marginal and quadratic Wasserstein distance. The proof in the more general situation is very close to the one presented here. See Remark 3.5 for some details.

Theorem 2.2 is actually a corollary of the following more general result, proven in Section 3.2.

Theorem 2.4 (General Cucker-Smale model with general sublinear force).

Let Φ t the flow defined by the system (8), γ(x, v) Lipschitz continuous bounded in x and sublinear in v, and let ρ t be the solution to [START_REF] Golse | On the derivation of the Hartree equation in the mean field limit: Uniformity in the Planck constant[END_REF], γ bounded on R 2d , with an initial condition ρ in 1 ∈ L 1 (R 2d ) compactly supported. Finally, let ρ t N ;1 be the first marginal of ρ t N := Φ t #(ρ in ) ⊗N , as defined in [START_REF] Dobrushin | Vlasov equations[END_REF].

Then, for all N > 1, t ∈ R, W 2 (ρ t N ;1 , ρ t ) ≤ C(t)N -1 2 with C(t) := 4 t 0 sup (x,v),(x ,v )∈supp[ρ t ] |γ(x -x , v -v )| 2 e t s L(u)du ds 1 2 , L ¯(u) := 2(1 + 2 min ( sup i,l=1,...,N (Y,Ξ)∈supp[ρ u N ] Lip (γ) 2 (y i -y l ,ξ i -ξ l ) , sup (x,v),(x ,v )∈supp[ρ u ] Lip (γ) 2 (x-x ,v-v ) ))).
The following result is elementarly derived from Theorem 2.4.

Corollary 2.5 (General Cucker-Smale model with bounded global Lipschitz force).

Let ρ t be the solution to (9), γ globaly Lipschitz and bounded on R 2d , with an initial condition ρ in ∈ L 1 (R 2d ) and Φ t the flow deinfed by the system (8). Finally, let ρ t N ;1 be the first marginal of ρ t N := Φ t #(ρ in ) ⊗N , as defined in [START_REF] Dobrushin | Vlasov equations[END_REF].

Then, for all N > 1, t ∈ R, W 2 (ρ t N ;1 , ρ t ) ≤ C(t)N -1 2 with C(t) := 4 γ ∞ e Λt -1 Λ 1 2 Λ := 2(1 + 2 Lip(γ) 2 ).
Note that no need of compacity of the support of ρ in is needed any more in Corollary 2.5.

Theorem 2.4 gives a precise estimate involving, through the expression of the functions C(t) and L(t), the knowledge of the size of the support of the initial data propagated by the particle flow Φ(t) driven by [START_REF] Golse | On the derivation of the Hartree equation in the mean field limit: Uniformity in the Planck constant[END_REF] and the kinetic flow induced by [START_REF] Golse | On the derivation of the Hartree equation in the mean field limit: Uniformity in the Planck constant[END_REF]. This information might be given by the explicit models, i.e. the function γ, as it is the case for the Cucker-Smale model (see also the very end of this section).

In the general case, the boundness in space and sublinearity in velocities of γ allow to control the increasing of the flow Φ(t), and leads to our next result, whose proof is given in Section 3.3 below.

Corollary 2.6. Under the same hypothesis as in Theorem 2.4 we have that, for all

N > 1, t ∈ R, W 2 (ρ t N ;1 , ρ t ) ≤ C(t)N -1 2 with C(t) = 2γ 0 ( v L ∞ (supp[ρ in ]) + v L 1 (supp[ρ in ]) ) × 2e ( e 4γ 0 t 4γ 0 ( v L ∞ (supp[ρ in ]) + v L 1 (supp[ρ in ]) )
2 ) e 4t (e 4γ 0 t -1)

1 2 . ( 11 
)
Let us finish this section of results by a simple remark. Flocking properties of the solution of the Vlasov kinetic equation ( 2) can be derived from the corresponding properties of the particle system (1), as in [START_REF] Ha | A simple proof of Cucker-Smale flocking dynamics and mean-field limit[END_REF][START_REF] Ha | Uniform stability of the Cucker-Smale model and applications to the mean-field limit[END_REF]. But they can also be derived by a direct PDE study of (2), as in [START_REF] Piccoli | Control to flocking of the kinetic Cucker-Smale model[END_REF]. This suggest a kind of inverse questioning: suppose one determines some flocking properties for the solution of a general kinetic Vlasov equation, e.g. [START_REF] Golse | On the derivation of the Hartree equation in the mean field limit: Uniformity in the Planck constant[END_REF]. Does this infer on flocking properties for the corresponding particle system, e.g. ( 8)? Our Corollary 2.6 gives some insight on this problem, as it tells us quantitatively how close is the solution of the kinetic equation (and its tensorial powers) to the marginals of any orders of the pushforward obey the corresponding particle flow of a general N particle density.

More precisely, suppose that the solution ρ t to (9) satisfies the following property:

(12) supp[ρ t ] ⊂ B(x + tv, X) × B(v, V e -αt )
for some (x, v) ∈ R 2d and some positive constants X, V, α. Here B( w, W ) designates the ball of center w and radius W in R d . This implies easily that L(u) in Theorem 2.4 can be easily estimated by

L(u) ≤ 2(1 + 8γ 2 0 (v 2 + V 2 e -2αu )) ≤ 2(1 + 8γ 2 0 (v 2 + V 2 )
) and, therefore, in the same Theorem, ( 13)

C(t) ≤ 4γ 0 (v 2 + V 2 ) e 2(1+8(v 2 +V 2 ))t -1 2(1 + 8(v 2 + V 2 ) .
Note that in [START_REF] Jabin | Mean Field limit and propagation of chaos for Vlasov systems with bounded forces[END_REF], C(t) has an exponential growth, and not a double exponential one as in Corollary 2.6. In particular, since [START_REF] Ha | From particle to kinetic and hydrodynamic descriptions of flocking[END_REF] holds true for the Cucker-Smale models by Theorem 3.1, equation (3.2), in [START_REF] Piccoli | Control to flocking of the kinetic Cucker-Smale model[END_REF], [START_REF] Jabin | Mean Field limit and propagation of chaos for Vlasov systems with bounded forces[END_REF] provides an alternative proof of Theorem 2.2 with (slightly) different values of the constants involved in its statement.

Of course the first marginal ρ t N ;1 of the pushforward of (ρ in ) ⊗N by the flows induced by the system (8) has no reason for being compactly supported, as we did not impose anything on the particle flow. Nevertheless, the following result provides for ρ t N ;1 a weak version of the support property [START_REF] Ha | From particle to kinetic and hydrodynamic descriptions of flocking[END_REF].

Theorem 2.7. With the same notations and hypothesis as in Theorem 2.4, let us suppose moreover that ρ t satisfies [START_REF] Ha | From particle to kinetic and hydrodynamic descriptions of flocking[END_REF].

For all t, > 0 let us define

N t, := C(t) 2 ,
where C(t) is the function defined by [START_REF] Jabin | Mean Field limit and propagation of chaos for Vlasov systems with bounded forces[END_REF].

Then, for every N ≥ N t, and every Lipschitz function ϕ on R 2d of Lipschitz constant smaller than 1,

R 2d \B(x+tv,X)×B(v,V e -αt ) ϕ(x, v)ρ t N ;1 dxdv ≤ .
Remark 2.8. Note that, by Remark 2.3, the same type of result is also true for marginals of any order, by cooking up a new value of N t, , i.e. C(t), using the constants given in Remark 2.8 below: for all n = 1, . . . , N, t, > 0, there exists N t, ,n such that, for every N ≥ N t, ,n and every Lipschitz function ϕ on R 2dn of Lipschitz constant smaller than 1,

R 2dn \(B(x+tv,X)×B(v,V e -αt )) ×n ϕ(x, v)ρ t N ;n dxdv ≤ .
Proof. It is an immediate consequence of Theorem 2.4 or Theorem 2.6, and the fact that the Wasserstein distance induces a metric for the weak topology in the sense that sup

Lip (ϕ)≤1 (µ -ν)ϕ(x, v)dxdv ≤ W 2 (µ.ν)
for every probability measures µ and ν 3. Proofs 3.1. Preliminaries. Let us first recall the general situation we are dealing with, in order also to fix the notations. We consider on R 2dN the following Cucker-Smale type vector field

ẋi = v i (14) vi = G i (X, V ), i = 1, . . . , N where (15) G i (X, V ) = 1 N N j=1 γ(x i -x j , v i -v j ).
Here the function γ(x, v) : R 2d → R d is a Lipschitz, bounded in x and sublinear in v, continuous function., such that γ(x, v), Lip(γ) (x,v) ≤ γ 0 |v|. We used the notation X = (x 1 , . . . , x N ), V = (v 1 , . . . , v N ).

In fact, we are rather interested in the Liouville equation associated to ( 14) [START_REF] Ha | From particle to kinetic and hydrodynamic descriptions of flocking[END_REF], namely ( 16)

∂ t ρ t N + V • ∇ X ρ t N + N i=1 ∇ v i .(G i ρ t N ) = 0, ρ t=0 N = ρ in N with ρ in N ∈ P(R 2dN
). Although the argument is standard, let us recall why the solution of ( 16) is equal to the pushforward of ρ in N by the flow Φ t generated by ( 14): integrating ρ in N against a test ϕ function composed by Φ t gives ( 17)

∂ t ϕ(Φ t (X, V ))ρ in N (X, V )dXdV = ϕ(X, V )∂ t (Φ t #ρ in N (X, V ))dXdV. On the other side ∂ t ϕ(Φ t (X, V ))ρ in N (X, V )dXdV = ( Φt • ∇ (X,V ) ϕ)(Φ t (X, V ))ρ in N (X, V )dXdV = ((V, G) • ∇ (X,V ) ϕ)(Φ t (X, V )))ρ in N (X, V )dXdV = ((V, G) • ∇ (X,V ) ϕ)(X, V ))(Φ t #ρ in N (X, V )dXdV = -ϕ(X, V )∇ (X,V ) • (V, G)Φ t #ρ in N (X, V ) dXdV, (18) 
so that ( 17) and [START_REF] Villani | Optimal Transport. Old and New[END_REF] implies that Φ t #ρ in N solves [START_REF] Sznitman | Topics in propagation of chaos[END_REF]. We want to prove that the marginals of ρ t N tend, as N → ∞, to the solution of a Vlasov type equation.

Let us recall that such Vlasov-type equation associated to [START_REF] Sznitman | Topics in propagation of chaos[END_REF], introduced in [12] for the Cucker-Smale model, reads

(19) ∂ t ρ t (x, v) + v • ∇ x ρ t (x, v) + ∇ v • (G ρ t ρ t (x, v)) = 0, ρ t=0 = ρ in 1 ∈ L 1 (R 2d , dxdv), with (20) G ρ (x, v) = R 2d
γ(x -y, v -w)ρ(y, w)dydw.

We can now prove the main results of this paper.

3.2. Proof of Theorem 2.4. The proof will be articulated around the four lemmas which follow. We will denote X = (x 1 , . . . , x N ), V = (v 1 , . . . , v N ), Y = (y 1 , . . . , y N ), Ξ = (ξ 1 , . . . , ξ N ). Let π in N be defined by

π in N (Y, Ξ, X, V ) := (ρ in ) ⊗N (X, V )δ(X -Y )δ(V -Ξ). Obviously π in N ∈ Π((ρ in ) ⊗N , (ρ in ) ⊗N ). Moreover, as mentioned before, (21) 
R 2dN ×R 2dN (|Y -X| 2 + |Ξ -V | 2 )π in N (dY, dΞ, dX, dV ) = 0,
so that π in N is an optimal coupling between (ρ in ) ⊗N and itself.

The following first Lemma will be one of the keys of the proof of Theorem 2.2. It consists in considering in evolving a coupling π in N of two initial conditions of the Liouville [START_REF] Sznitman | Topics in propagation of chaos[END_REF] and Vlasov (19) equations by the two dynamics of each factor of π in N . Lemma 3.1. Let π N (t) be the unique (measure) solution to the following linear transport equation

(22) ∂ t π N +V •∇ X π N +Ξ•∇ Y π N + N i=1 (∇ ξ i • (G i (Y, Ξ)π N ) + ∇ v i • (G ρ t (x i , v i ))π N )) = 0 with π N (0) = π in N .
Then, for all t ∈ R, π N (t) is a coupling between ρ t N and (ρ t ) ⊗N . Proof. By taking the two marginals of the two sides of the equality, one gets that they satisfy the two Liouville and Vlasov equations. The result is then obtained by uniqueness of the solutions of both equations.

Lemma 3.2. Let D N (t) := 1 N N j=1 (|x j -y j | 2 + |v j -ξ j | 2 )dπ N (t) = 1 N ((X -Y ) 2 + (V -Ξ) 2 )dπ N (t) .
Then

dD N dt ≤ L(t)D N + 1 N N j=1 |G ρ t (x i , v i ) -G i (X, V )| 2 (ρ t ) ⊗N dXdV , with L(t) := (23) 2(1 + 2 min ( sup i,l=1,...,N X,V,Y,Ξ∈supp[π N (t)] Lip (γ) 2 (x i -x l ,v i -v l ) , sup i,l=1,...,N X,V,Y,Ξ∈supp[π N (t)] Lip (γ) 2 (y i -y l ,ξ i -ξ l ) ) ).
Proof. We first notice that

dD N dt = 2 N (V -Ξ).(X -Y ) + N i=1 (v i -ξ i ).(G ρ t (x i , v i ) -G i (Y, Ξ)) dπ N . Using 2uv ≤ u 2 + v 2 we get dD N dt ≤ 1 N (X -Y ) 2 + 2(V -Ξ) 2 ) + N i=1 |G i (Y, Ξ) -G ρ t (x i , v i )| 2 dπ N ≤ 2D N (t) + 1 N N i=1 |G i (Y, Ξ) -G ρ t (x i , v i )| 2 dπ N . (24) Let us add to G i (Y, Ξ) -G ρ t (x i , v i ) the null term G i (X, V ) -G i (X, V ) so that |G i (Y, Ξ) -G ρ t (x i , v i )| 2 ≤ 2 |G i (Y, Ξ) -G i (X, V )| 2 + |G i (X, V ) -G ρ t (x i , v i )| 2 Let us first estimate |G i (Y, Ξ) -G i (X, V )| 2 ≤ min (Lip(G i ) 2 (X,V ) , Lip(G i ) 2 (Y,Ξ) ) |X -Y | 2 + |V -Ξ| 2 . By (15), we have min (Lip(G i ) 2 (X,V ) , Lip(G i ) 2 (Y,Ξ) ) ≤ min ( sup l=1,...,N Lip (γ(x i -x l , v i -v l ) 2 , sup l=1,...,N Lip (γ(y i -y l , ξ i -ξ l ) 2 ).
Therefore, by convexity,

2 N N i=1 |G i (Y, Ξ) -G i (X, V )| 2 π N (dX, dV, dY, dΞ) ≤ 4 min ( sup i,l=1,...,N X,V,Y,Ξ∈supp[π N (t)] Lip (γ(x i -x l , v i -v l ) 2 , sup i,l=1,...,N X,V,Y,Ξ∈supp[π N (t)] Lip (γ(y i -y l , ξ i -ξ l ) 2 ) ×D N (t).
And the lemma follows by (24).

It remains to estimate in (24) the term

1 N N i=1 |G i (X, V ) -G ρ t (x i , v i )| 2 π t N (dX, dV, dY, dΞ) = 1 N N i=1 |G i (X, V ) -G ρ t (x i , v i )| 2 (ρ t ) ⊗N dXdV.
The following result is a variant of Lemma 3.3 in [START_REF] Golse | On the Mean-Field and Classical Limits of Quantum Mechanics[END_REF] with the special value p = 2 and d replaced by 2d. Lemma 3.3. Let ρ be a compactly supported probability density on R 2d and let F be a locally bounded vector field on R 2d .

For each j = 1, . . . , N , one has

F ρ(x j , v j ) - 1 N N k=1 F (x j -x k , v j -v k ) 2 ρ ⊗N dXdV (25) ≤ 4 N sup (x,v),(x ,v )∈supp[ρ] |F (x -x , v -v )| 2 .
Proof. Let us denote, for

x j , x, v j , v ∈ R d , j = 1, . . . , N , (26) ν x j ,v j (x, v) := F ρ(x j , v j ) -F (x j -x, v j -v)
(note that F ρ(x j , v j ) doesn't depend on (x, v)).

One has (let us remind the notation X := (x 1 , . . . , x N ),

V := (v 1 , . . . , v N )) F ρ(x j , v j ) - 1 N N k=1 F (x j -x k , v j -v k ) 2 ρ ⊗N dXdV = 1 N N k=1 ν x j ,v j (x k , v k ) 2 ρ ⊗N dXdV = 1 N 2 k,l=1,...N ν x j ,v j (x k , v k )ν x j ,v j (x l , v l )ρ ⊗N dXdV = 1 N 2 k =l =j =k ν x j ,v j (x k , v k )ρ(x k , v k )dx k dv k ν x j ,v j (x l , v l )ρ(x l , v l )ρ(x j , v j )dx l dv l dx j dv j + 1 N 2 k =l=j ν x j ,v j (x k , v k )ρ(x k , v k )dx k dv k ν x j ,v j (x j , v j )ρ(x j , v j )dx j dv j + 1 N 2 k =j ν x j ,v j (x k , v k ) 2 ρ(x k , v k )dx k dv k ρ(x j , v j )dx j dv j + 1 N 2 ν x j ,v j (x j , v j ) 2 ρ(x j , v j )dx j dv j ≤ N + 1 N 2 sup (x,v),(x ,v )∈supp[ρ] ν x ,v (x, v) 2
since, by (26), ν x ,v (x, v)ρ(x, v)dxdv = 0. for all x , v ∈ R d , and ρ(x, v)dxdv = 1.

By (26) again,

|ν x ,v (x, v)| ≤ 2 sup (x,v)∈supp[ρ] |F (x -x, v -v)| ≤ 2 sup (x,v),(x ,v )∈supp[ρ] |F (x -x, v -v)|
and the lemma is proved.

Lemma 3.3 with F (x, v) = γ(x, v) together with Lemma 3.2 gives immediately that dD N dt ≤ L(t)D N + 4 N sup (x,v),(x ,v )∈supp[ρ t ] |γ(x -x , v -v )| 2
and, by Gronwall's inequality,

(27) D N (t) ≤ 4 N t 0 sup (x,v),(x ,v )∈supp[ρ t ] |γ(x -x , v -v )| 2 e t s L(u)du ds since D N (0) = 0 by (21).
Let us denote by (π N (t)) 1 the measure on R 2d × R 2d defined, for every test function ϕ(x 1 , v 1 ; y 1 , ξ 1 ), by

R 2dN ×R 2dN ϕπ N (dX, dV ; dY dΞ) = R 2d ×R 2d ϕ(x 1 , v 1 ; y 1 , ξ 1 )(π N (t)) 1 (dx 1 , dv 1 ; dy 1 , dξ 1 ).
We now notice the following straightforward fact. Lemma 3.4. (π N (t)) 1 is a coupling between ρ t N ;1 and ρ t .

Let us note that π in N is obviously symmetric by permutation of the phase-space variables, that is

(28) T σ #π in N = π in N , for each σ ∈ S N ,
where S N is the group of permutations of N elements and T σ (x 1 , v 1 , . . . , x N , v N , y 1 , ξ 1 , . . . , y N , ξ N ) = (x σ(1) , v σ(1) , . . . , x σ(N ) , v σ(N ) , y σ(1) , ξ σ(1) , . . . , y σ(N ) , ξ σ(N ) ) .

Therefore, π N (t) is also symmetric by permutations for all t ∈ R, as being the unique solution to the equation ( 22), being itself, by construction, symmetric by permutations, .

Consequently, one has easily that (29) Finally, recalling that

D N (t) = (|x 1 -y 1 | 2 + |v 1 -ξ 1 | 2 )d(π N (t
π in N (Y, Ξ, X, V ) := (ρ in ) ⊗N (X, V )δ(X -Y )δ(V -Ξ), one gets immediately that (Y, Ξ; X, V ) ∈ supp[π N (t)] ⇒ (Y, Ξ) ∈ supp[ρ t N ] and ⇒ (X, V ) ∈ supp[(ρ t ) ⊗ N ] ⇔ (x i , v i ) ∈ supp[ρ t ], i = 1, . . . , N.
Therefore, after (23)

L(t) ≤ L(t) := (32) 2(1 + 2 min ( sup i,l=1,...,N (Y,Ξ)∈supp[ρ t N ]
Lip (γ) 2 (y i -y l ,ξ i -ξ l ) , sup

(x,v),(x ,v )∈supp[ρ t ] Lip (γ) 2 (x-x ,v-v ) )) ).
Theorem 2.4 is proven.

Remark 3.5 (Higher order Wasserstein and marginals). As we wanted to leap this note as short as possible, we expressed our results only for the first marginal ρ N ;1 in the 2-Wasserstein topology, but the method developed in [START_REF] Golse | On the Mean-Field and Classical Limits of Quantum Mechanics[END_REF] allows as well, with the same kind of modification than the ones used before in this section, to the higher cases. |γ(y k -y l , ξ k -ξ l )| p e 2 max (1,p-1) t s L(u))du ds where

L(u) = 1 + 2 p-1 sup (x,v),(y,ξ)∈supp[ρ t ] Lip(γ) p (x-y,v-ξ) .
The main changes in the proof are the use of the Young inequality

puv p-1 ≤ u p + (p -1)v p ≤ max(1, p -1)(u p + v p )
instead of 2uv ≤ u 2 + v 2 before (24), the convexity of | • | p for p ≥ 1 and a variant of Lemma 3.3, similar to Lemma 3.3 in [START_REF] Golse | On the Mean-Field and Classical Limits of Quantum Mechanics[END_REF], which reads

F ρ(x j , v j ) - 1 N N k=1 F (x j -x k , v i -v j ) p ρ ⊗N dXdV ≤ 2[p/2] + 2 N min(p/2,1) sup k,l1,...,N (Y,Ξ)∈supp[ρ t N ] |F (y k -y l , ξ k -ξ l )| p .
Finally, the statement of Lemma Lip (γ) 2 (y i -y l ,ξ i -ξ l ) , sup

(x,v),(x ,v )∈supp[ρ t ] Lip (γ) 2 (x-x ,v-v ) ))). ≤ 2(1 + 2 sup (x,v),(x ,v )∈supp[ρ t ] Lip (γ) 2 (x-x ,v-v ) ). ≤ 2(1 + 2γ 2 0 sup (x,v),(x ,v )∈supp[ρ t ] |v -v | 2 ) ≤ 2(1 + 8γ 2 0 sup (x,v)∈supp[ρ t ] |v| 2 ) ≤ 2(1 + 8γ 2 0 sup (x,v)∈supp[ρ in ] |Φ v (t)(x, v)| 2 ).
Thanks to (37), we get

L(t) ≤ 2(1 + 16γ 2 0 e 4γ 0 t ( v L ∞ (supp[ρ in ]) + v L 1 (supp[ρ in ]) ) 2 )
By the same argument, we get

C(t) 2 := 4 t 0 sup (x,v),(x ,v )∈supp[ρ t ] |γ(x -x , v -v )| 2 e t s L(u)du ds, ≤ 32γ 2 0 ( v L ∞ (supp[ρ in ]) + v L 1 (supp[ρ in ]) ) 2 × t 0 e 4(γ 0 s+t-s) e 16γ 2 0 ( v L ∞ (supp[ρ in ]) + v L 1 (supp[ρ in ]) ) 2 (e 4γ 0 t -e 4γ 0 s )/4γ 0 ds ≤ 8γ 2 0 ( v L ∞ (supp[ρ in ]) + v L 1 (supp[ρ in ]) ) 2 e e 4γ 0 t 4γ 0 ( v L ∞ (supp[ρ in ]) + v L 1 (supp[ρ in ])
) 2 e 4t (e 4γ 0 t -1).

Corollary 2.6 is proven.

3.4. Proof of Theorem 2.2. In order to prove Theorem 2.2, we need to estimate, in the Cucker-Smale particular case, that is when

γ(x, v) = ψ(x)v,
the two quantities

C(t) := 4 t 0 sup (x,v),(x ,v )∈supp[ρ t ] |γ(x -x , v -v )| 2 e t s L(u)du ds 1 2 ≤ 2 ψ ∞ t 0 sup (x,v),(x ,v )∈supp[ρ t ] |v -v | 2 e t s L(u)du ds 1 2 . L(t) := 2(1 + 2 min ( sup i,l=1,...,N (Y,Ξ)∈supp[ρ t N ] Lip (γ) 2 (y i -y l ,ξ i -ξ l ) , sup (x,v),(x ,v )∈supp[ρ t ]
Lip (γ) |ξ i -ξ l | 2 ).

We will need just a very little part of the stability results expressed by Ha, Kim and Zhang in [START_REF] Ha | Uniform stability of the Cucker-Smale model and applications to the mean-field limit[END_REF], namely the following inequality:

d dt sup i,l=1,...,N (X,V )∈supp[ρ in N ]
|v k (t) -v l (t)| ≤ 0, ∀t.

Indeed, formula (8) in Lemma 2.2 in [START_REF] Ha | Uniform stability of the Cucker-Smale model and applications to the mean-field limit[END_REF] stipulates that d dt D V (t) ≤ 0, where D V (t), as defined in Corollary 1 of [START_REF] Ha | Uniform stability of the Cucker-Smale model and applications to the mean-field limit[END_REF], is precisely sup .

|v i -v l | 2 ≤ 4 v 2 L ∞ (
Theorem 2.2 is proved.

Appendix A. Dynamical estimates for general Cucker-Smale particle systems In this section, we give global estimates on the flow Φ N (t) generated by [START_REF] Golse | On the Mean-Field and Classical Limits of Quantum Mechanics[END_REF]. We have, for each i = 1, . . . , N , d dt 

|v i | ≤ | vi | ≤ 1 N N j=1 |γ(x i -v j , v i -v j )| ≤ 1 N N j=1 γ 0 |v i -v j | ≤ 1 N N j=1 γ 0 (|v j | + |v i |), (33) 

i

  ,l=1,...,N (X,V )∈supp[ρ in N ] |v k (t) -v l (t)| in the case p = 2 of the definition (4) of D V (0) := D V in [10]. This inequality leads naturally to sup i,l=1,...,N (X,V )∈supp[ρ t N ]

  i (0)|e 2γ 0 t . Turning back to (33), we get by (34), for each i = 1, . . . , N ,d dt (|v i |) ≤ γ 0 |v i | + γ 0 N N j=1 |v j | ≤ γ 0 |v i | + γ 0 e 2γ 0 t 1 N N j=1 |v j (0)| ≤ γ 0 |v i | + γ 0 e 2γ 0 t max j=1,...,N |v j (0)|.Therefore, again by Gronwall Lemma and uniformly in N ,|v i (t)| ≤ e γ 0 t |v i (0) + γ 0 max j=1,...,N |v j (0)| e γ 0 t -1 γ 0 ≤ max j=1,...,N |v j (0)|e 2γ 0 t , i = 1, . . . , N.(35)Finally,[START_REF] Golse | On the Mean-Field and Classical Limits of Quantum Mechanics[END_REF] gives immediatly that||x 1 (t)| -|x i (0)|| ≤ max j=1,...,N|v j (0)| e 2γ 0 t -1 2γ 0 , i = 1, . . . , N.

  )) 1

	and Lemma 3.4 immediately implies that		
	(30)					D N (t) ≥ W 2 (ρ t N ;1 , ρ t ) 2 ,	
	so that, by (27),						
	(31)	W 2 (ρ t N ;1 , ρ t ) 2 ≤	4 N	0	t	(x,v),(x ,v )∈supp[ρ t ] sup	|γ(x -x , v -v )| 2 e	t s L(u)du ds.

  Let us remind, for p ≥ 1, the definition of W p (µ, ν) for two positive measures µ, ν (cf. Definition 2.1W p (µ, ν) p = inf γ∈Γ(µ,ν) R m ×R m |x -y| p γ(dx, dy),and, for any probability measure ρ on R 2dN and n = 1, . . . , N , the definition of the nth marginal ρ N ;n defined on R 2dn ρ N ;n (x 1 , . . . , x n , v 1 , . . . , v n ) := , . . . , x n , x n+1 , . . . , x N , v 1 , . . . , v n , v n+1 , . . . , v N )dx n+1 . . . dx N dv n+1 . . . dv N .

	R 2d(N -n) ρ((x 1 One gets, for each p ≥ 1, N ≥ 1 and n = 1, . . . , N ,
	1 n	W p (ρ t N ;n , (ρ t ) ⊗n ) p ≤ D p,n (t)N -min (p/2,1)
	with	
		t
	D p,n (t) = 2 2p max (1, p -1)([p/2]+1)	sup
		0	k,l=1,...,N (Y,Ξ)∈supp[ρ t N ]

  3.4 becomes now easily that π N (t) n is a coupling between ρ t N ;n and (ρ t ) ⊗n , where π N (t) n is defined through by

	ϕπ N (dX, dV ; dY dΞ) = L(t) := 2(1 + 2 min ( sup i,l=1,...,N ϕπ N (t) n (d(x, v; y, ξ) 1 . . . d(x, v; y, ξ) Let us recall that (Y,Ξ)∈supp[ρ t N ]
	R 2dN ×R 2dN	R 2d ×R 2d

n ) for every test function ϕ((x, v; y, ξ) 1 , . . . , (x, v; y, ξ) n ), 3.3. Proof of Corollary 2.6. We get to estimates L(t) and C(t) as given in Theorem 2.4 out of the estimates established in Appendices A and B.

  -y l ,ξ i -ξ l ) )

	2 (x-x ,v-v ) )))
	≤ 2(1 + 2 (y i ≤ 2(1 + 2 ψ 2 sup i,l=1,...,N (Y,Ξ)∈supp[ρ t N ] Lip (γ) 2 sup ∞ i,l=1,...,N
	(Y,Ξ)∈supp[ρ t N ]

  supp[ρ in ]) , (|v| 2 + |ξ| 2 ) thanks to Lemma 3.2 in[START_REF] Piccoli | Control to flocking of the kinetic Cucker-Smale model[END_REF] which stipulates thatsupp v [ρ t ] ⊂ B(v, V (t)) with v = vρ in dxdv and d dt V (t) ≤ 0. Therefore v L ∞ (supp[ρ t ]) ≤ |v| + V (0) so that, since one can take V (0) = |v| + |supp[ρ in ]|, sup |supp[ρ in ]|) 2 e L(t-s) ds 1 2 = 2 ψ 2 ∞ 2(2|v| + |supp[ρ in ]|) 2 e Lt -1 L

	and		
		t	
	C(t) ≤ 2 ψ 2 ∞ 2	0	(2|v| + 1
				2
	which implies		
	L(t) ≤ 2(1 + 8 ψ 2 ∞ v 2 L We will estimate sup |v -ξ| 2 ≤ 2	sup
	(x,v),(y,ξ)∈supp[ρ t ]			(x,v),(y,ξ)∈supp[ρ t ]

∞ (supp[ρ in ]) ) := L. (x,v),(x v )∈supp[ρ t ] |v -v | 2 ≤ 2 ψ 2 ∞ |(2|v| + |supp[ρ in ]|) 2 .
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Appendix B. Dynamical estimates for general Cucker-Smale kinetic systems Let us recall that, according to Theorem 2.3 in [START_REF] Piccoli | Control to flocking of the kinetic Cucker-Smale model[END_REF], there exists a diffeomorphism Φ(t) on R 2d such that the solution ρ t of ( 9) is given by

Moreover, Φ(t) solves the system

Obviously

|v|ρ t dxdv ≤ e 2γ 0 t |v|ρ in dxdv.

Proof.

The result follows by Gronwall inequality.

Thanks to Lemma B.1, (36) becomes

and, by Gronwall Lemma, we have

). (37)