Green function and Poisson kernel associated to root systems for annular regions - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Green function and Poisson kernel associated to root systems for annular regions

Résumé

Let ∆ k be the Dunkl Laplacian relative to a fixed root system R in R d , d ≥ 2, and to a nonnegative multiplicity function k on R. Our first purpose in this paper is to solve the ∆ k-Dirichlet problem for annular regions. Secondly, we introduce and study the ∆ k-Green function of the annulus and we prove that it can be expressed by means of ∆ k-spherical harmonics. As applications, we obtain a Poisson-Jensen formula for ∆ k-subharmonic functions and we study positive continuous solutions for a ∆ k-semilinear problem.
Fichier principal
Vignette du fichier
Green function and Poisson kernel of the Annulus.pdf (167.53 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02005375 , version 1 (04-02-2019)

Identifiants

  • HAL Id : hal-02005375 , version 1

Citer

Chaabane Rejeb. Green function and Poisson kernel associated to root systems for annular regions. 2019. ⟨hal-02005375⟩
181 Consultations
352 Téléchargements

Partager

More