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Green function and Poisson kernel associated to root
systems for annular regions

Chaabane REJEB*

Abstract

Let Ay be the Dunkl Laplacian relative to a fixed root system R in R%, d > 2,
and to a nonnegative multiplicity function £ on R. Our first purpose in this paper
is to solve the Ay-Dirichlet problem for annular regions. Secondly, we introduce and
study the Ag-Green function of the annulus and we prove that it can be expressed
by means of Ag-spherical harmonics. As applications, we obtain a Poisson-Jensen
formula for Ag-subharmonic functions and we study positive continuous solutions for
a Ag-semilinear problem.

MSC (2010) primary: 31B05, 35J08, 35J65; secondary: 31C45, 46F10, 47B39.

Key words: Dunkl-Laplace operator, Poisson kernel, Green function, Dirichlet problem, spherical
harmonics, Newton kernel.

1 Introduction

Since the 90’s, extensive studies have been carried out on analysis associated with Dunkl
operators. These are commuting differential-difference operators on R? introduced by C.
F. Dunkl (see [6]). The Dunkl analysis includes especially a generalization of the Fourier
transform (called the Dunkl transform) and the Laplace operator known as the Dunkl
Laplacian (and denoted by Ap).

The Dunkl theory has many applications as well in mathematical physics and probability
theory. In particular, it has been used in the study of the Calogero-Moser-Sutherland and
other integrable systems (see [4, 10]) and in the study of Markov processes generalizing
Brownian motion (see [22]).

Recently, a special interest has been devoted to potential theory associated with the Dunkl
Laplacian. The study focused on Ag-harmonic functions (see [2, 11, 12, 17, 19, 20]), on
Ag-Newton potential theory (including Ag-subharmonic functions) (see [13]) and on Ay-
Riesz potentials of Radon measures (see [14]). More recently, by means of the Ag-Newton
kernel, the Green function of the open unit ball has been studied in [15]. Note that finding
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Ag-Green functions for other open sets is a rather difficult problem already in the case of
the classical Laplace operator. The aim of this paper is to show that we can determine the
Aj-Green function for annular regions in R? by using Aj-spherical harmonics as a crucial
tool.

Let us assume throughout the paper that d > 2. Let A be the annulus

A:={zecR? p<|z| <1} with pelo,1].

After giving some properties of the Ag-Green function Gy 4 of A, we will use it to study
the semilinear problem

Ak (uwg) = ¢(.,u)wg, in the sense of distributions
u = f, on 0A,

where wy, is a precise weight function (see (2.6) for its expression).

More precisely, under some assumptions on the function ¢, we will show that if f € C(0A)
is nonnegative, this boundary problem has only and only one positive continuous solution
on A which satisfies (see Theorem 5.2)

Veed u)+ /A Gro 90y, uly))n(y)dy = Poalf](@).

Here Py 4[f] is the unique solution in C*(A) N C(A) of the boundary Dirichlet problem

Apu=0, on A,
u = f, on 0A,

that will be given explicitly in Section 3.

This paper is organized as follows. In Section 2, we recall some basics from Dunkl
theory that will be used throughout the paper. In Section 3, we give an explicit solution
of the boundary Dirichlet problem for the annulus. The Green function Gy 4 will be
introduced and studied in Section 4. Some applications will be given in the last Section.
Precisely, we will obtain a Poisson-Jensen formula for Ag-subharmonic functions in the
annulus and we will study positive solutions of the above semilinear problem.

2 Basics from Dunkl theory

We start by recalling some useful facts in the Dunkl theory. Let R be a root system in
the Euclidian space R?, in the sense that R is a finite set in R? \ {0} such that for every
a e R, RNRa = {+xa} and 0,(R) = R (where o, is the reflection w.r.t. the hyperplane
H,, orthogonal to o). The subgroup W C O(R?) generated by the reflections o4, o € R,
is called the Coxeter-Weyl group associated to R. We refer to ([18]) for more details on
root systems and their Coxeter-Weyl groups.

Let k be a fixed nonnegative multiplicity function on R (i.e. k is W-invariant). For
¢ € R4, the ¢-directional Dunkl operator associated to (W, k) is defined by

Def(a) == 0ef(x) + 3 k(o) o, €) TEL—0t) o o1y

aER 4 <C¥7 SU)



where ¢ is the usual {-directional partial derivative and R is a positive subsystem.

Let us denote by P(R?) (resp. P,(R?)) the space of polynomial functions on R? (resp.
the space of homogeneous polynomials of degree n € N).

It was shown that there is a unique linear isomorphism Vj, from P(R%) onto itself such
that Vi (Pn(R%)) = P, (R?) for every n € N, V;(1) = 1 and

VEERY, D¢V = 0V (2.1)

The operator Vj is known as the Dunkl intertwining operator (see [7, 8]). It has been
extended to a topological isomorphism from C*(R?) onto itself satisfying (2.1) (see [26]).
Furthermore, according to [23], for each = € R?, there is a compactly supported probability
measure i, on R? such that

VIeCTRY, VilN@) = | @dusy). (2:2)

If W.x denotes the orbit of z under the W-action and Co(z) its convex hull, then
supp pz C Co(x) C B(0, ||z]|). (2.3)

The Dunkl-Laplacian is defined as Ay = Z?Zl D? | where (ej)1<j<q is the canonical

€;7

basis of R?. It can be expressed as follows

2(Vf(m),a> ‘Qf(x) —f(O'a(.%))
(o,

x) (v, :c>2

where A (resp. V) is the usual Laplace (resp. gradient) operator (see [6, 8]). Note that if
k is the zero function, the Dunkl Laplacian reduces to the classical one which is commutes
with the action of O(R?). For general k > 0, A;, commutes with the 1W-action (see [24])
ie.

Apf (@) = Af @)+ Y k(a)(

aER

), f e CHRY), (2.4)

—llaf

VgeW, golAp=A,og. (2.5)
Let L2(S971), d > 2, be the Hilbert space endowed with the inner product

1
N dy, gd—1

P @)y, : p(&)q(&)wr(&)do ().

We denote by ||.|| L2(54-1) the associated Euclidean norm. Here, do is the surface measure

on the unit sphere S%~!, wy, is the weight function given by

wi(@) = [Taer, [ {a,@) [P (2.6)
and dj, is the constant
dp = [ga-1 wi(§)do(€). (2.7)

The function wy is W-invariant and homogeneous of degree 2y := 23" aER k(o).
To simplify, we introduce the constant

d
)\k::§+'y—120. (2.8)



Let Ha, n(RY) = P, (RY) N KerAy be the space of Ag-harmonic polynomials, homoge-
neous of degree n on R%. From [8], we know that if n # m, then Ha, n(R?) L Ha, m(R?)
in Li(Sdil). Moreover, for every n € N, we have

Pu(R?) = @ |l H a2y (RY). (2.9)

The restriction to the sphere S%—! of an element of A Apyn (Rd) is called a Ag-spherical har-
monic of degree n. The space of Ag-spherical harmonics will be denoted by HAk,n(Sd_l).
This space has a reproducing kernel Zj, ,, uniquely determined by the properties (see [5, 8])

i) for each v € S, Z; . (x,.) € Ha,n(S971),
ii) for every f € Ha, n(S91), we have

F@) = (. Zin(s ), = — [ 1) Zunle, Qun(©)do(€), = 54 (2.10)

- dk Sd—1
From this formula, we can see that
VgeW, Vayesit Zin(92,9Y) = Zyn(z,9). (2.11)

In classical case (i.e. k = 0), Zyn(z,.) is known as the zonal harmonic of degree n (see
1, 5]). Note that if {Yj,,5 = 1,...,h(n,d) := dimHa, »(R?)} is a real-orthonormal basis
of Ha,n(S471) in L2(S971), then

h(n,d)
Zk,n(may) = Z Y;,n(x)}/},n(y) (2.12)
j=1

By means of the Dunkl intertwining operator and Gegenbauer polynomials, Zj ,, is given
explicitly by (see [5], Theorem 7.2.6. or [27])

(n + )\k)(2)\k)n

d—1 _
v T,y € S s Zk,n(zay) - )\kn'

Ve(BX (o)) @), (213)

where )y is the constant given by (2.8), Py, u > —1/2, is the normalized Gegenbauer
polynomial (see [8] p. 17) defined by

(=" oni/2—p 4" 2\ntpu—1/2
B ) _ I 1 _ p2\ntu

and (z), :=z(x+1)...(z+n —1) is the Pochhammer symbol.
At the end of this section, to simplify, when & = 0 we will use the usual nota-

tions L?(S471) for LE(S41), Hapn for Hagn, wa—1 := do the surface area of S9! and
Zn = ZO,n-



3 Aj-Dirichlet problem for the annulus

In this section, by introducing a Poisson type kernel, we will solve the Dirichlet problem
for the Dunkl Laplacian in annular regions

AR17R2 = {.’L‘ € Rd : R < ”l‘” < RQ}
Note that from the homogeneity property of Ay:
SroAp=1"2AL06,, with §8,(f)(z):= f(rz),

it suffices to do this for the annular region A, with p €]0,1[ fixed. In the sequel, to
simplify, we will use the notation A instead of A, .
Recall that the Ag-Poisson kernel of the unit ball (see [8]) is given by

= 1= ] .
Pu(wy) = Y Zin(w,y) = —dpy (), (w,y) € Bx S (3.1)
o) =2 7 J. (1= (@, 2) +Hal2) T
From [8], we know that
i [ P et = 1. (32)

We start by two preliminary useful results. For each n € N, we see that the restriction
of the Dunkl intertwining operator

Vi : Han(RY) — Ha, n(RY)

is a linear isomorphism.

In the first result, we will estimate the matrix-norms of this operator and of its inverse
where the space Ha n(R?) (resp. Ha, n(RY)) is endowed with the L2(S9~!)-norm (resp.
the LZ(S971)-norm). More precisely,

Proposition 3.1 Let n be a nonnegative integer.

1. For every f € Han(R?), we have

V()2 (se-1) < dimHan(RYIF]|L2(sa-1)- (3-3)

2. For every f € Ha, »(R?), we have

(’Y =+ %)nwdfl

Vi ()l p2(sa1y < ()

dimHa (R £l 12(50-1): (3.4)

[VIs9

n



Proof:1) Let f € Han(RY). After rewriting the reproducing formula (2.10) in the classical
case (i.e. kK =0), applying it to f and using Fubini’s theorem, we get
1
Vi(F)(w) = FEVA[Zn( ©)](2)do(€), xR, (3.5)

Wd—1 Jgd—1

But, from [1], Proposition 5.27, we have
V2,6€ 8T | Zu(2,6)] < dimHan(RY)
which implies that
V(2,6) €RYx ST (Zy(2,6)| < (dimHan(RY) )|z (3.6)
Thus, using the relations (2.3), (3.5) and (3.6) and Cauchy-Schwarz inequality, we obtain
vz eRY  |Vi(f)(@)] < dimHan(R)|f]L2isan || (3.7)

This implies that
IVi()l 22 s-1y < dimHan(R | f ]| L2 (s0-1).

2) Let f € Ha,.»(R?). Applying the classical case of the formula (2.10) with f < V()
and using (3.6) and Cauchy-Schwarz inequality, we deduce that

vaeRY VU (f)(@)] < dimHan RV ()lgaige )™

Now, using the following result (see [8], Proposition 5.2.8): for p € P,(R%) and ¢q €
Ha n(RY), then

1

Wd—1

(v + g)nwd—l
(%)ndk

/ P(E)q(€)do(€) = / P(E)Vi(a) (€)wn (€)dor (€)
Sd—1 §d—1

with p=¢ = Vk_l(f), we obtain

(v+ g)nwdfl
(§)ndr
(v + %l)nwd—l
N (%)ndk
(v + g)nwdfl
T (9

This proves the desired relation. O

Vi () sy < L W @ s©(©)ao o)

dimHe RV Dlzzgsosy [ F©k(©d(©

dimH A n RV (D)l 2gsan 1f 12 s-1y-

Corollary 3.1 The following inequality holds:

(v + %)nwd—l

o )Q(dimHA,n(Rd)f. (3.8)

v z,y e‘sdilv ’ka(x7yﬂ < (

[\ClisH

n



Proof: Let {Yjn,7 = 1,...,h(n,d) = dimHa, n(R?)}, is a real-orthonormal basis of
Hapn(RY) in L2(S971). Using (3.7) with f =V, '(Y}») and (3.4), we deduce that

Vo€ ST V()] < dimHan(RY[Vi (V)2 gsay

+ $pwa1 /. 2
< W(dzmﬂA,n(Rd)> )

Consequently, we obtain the result from (2.12). O
Following the classical case k = 0 (see [1]), we define the kernel Py (.,.) on A x S¢~! by

1 _ (lzly=2x-2n
. 1)
Pyi(z,¢) - Zakn VZen(x,€), with apn(z) = e (3.9)

Proposition 3.2 The kernel Py, 1 satisfies the following properties

i) For each ¢ € S%71, Py1(.,€) is a Ag-harmonic function on A and Py1(.,§) = 0 on
S(0, p).

ii) For every x € A and £ € ST,

iii) Let x € A and € € S fized. Then
VgeW, Pri(gz,g8) =Pri(z,8). (3.11)

Proof: i) Clearly Py 1(.,£) = 0 on S(0, p). On the other hand, for any (z,£) € A x S4-1
we can write

() Zkn(2,6) = ctnZin (7, €) — conKi[Zg (-, €)](T),

where ¢1 5, ¢, are two nonnegative constants and Kj, is the Ag-Kelvin transform (see [9])
given by

Ei[fl(x) = el f(2/ll2l*) = [l f (/||=]?) (3.12)
and f is a function defined on R?\ {0}. As the Aj-Kelvin transform preserves the Ay-
harmonic functions on R4\ {0} (see [9]), we deduce that the function z — ag (%) Zn(z, )
is Ag-harmonic on A.
According to [8] (see also [1] and [5]), we know that

—1 —
o = - (474 (14,9

Hence, we have

2—d d —
ngrfwn dimHan(RY) = R



Moreover, we have

lim n*VM = lim n~" F(d/2) F(d/2 +v+ n) _ F(d/Q)
nmre (4),  noteo T(y+d/2) T(d/2+n)  T(y+d/2)

Consequently, from (3.8), there exists C' = C(d, ) > 0 such that
VeeRY, VyeSit |Z . (x,y)] < OnPH2=10)g|m, (3.13)
This inequality as well as the fact that 0 < aj,(2) < 1 imply that the series

ano ak,n(x)Zk,n(xv f)

converges uniformly on A, g x S~ for every R €]p,1[. Then , by Corollary 3.3 in [11],
the function Py, (., §) is Ag-harmonic on A.
ii) For € > 0 small enough and ¢ € S?~1, consider the function

he(x) := ano () Zipn((1 =€)z, §).

As above, from the inequality (3.13) and the homogeneity of Z, ,,(.,&), we see that h. de-
fines a Ag-harmonic function in the annular region A, g with R = (1—¢)~!. Furthermore,
he =0 on S(0,p) and if 2 € S9!, then

he(®) = 3050 Zen((1 =€), ) = Bir((1 =€), ). (3.14)

where Py is the Aj-Poisson kernel of the unit ball (see [8]). In particular, h. > 0 on S,
Consequently, by the weak minimum principle for Ag-harmonic functions (see [11] or [21]),
we deduce that

VeeA he(xr)>0.

On the other hand, for each fixed (z,£) in A x S9!, we have

Pii(@,6) —he(@)] < (1= (1= &) )agn()| Zyn(e, )|

n>1
<CY (1= (1=e)")n> 210 g™,

n>1

Hence, by the monotone convergence theorem we have Py, (z, &) = lim._,0 he(z). Finally,
we obtain Py ;1 >0 on A X Sa—1,

e For ¢ € 8971 fixed, the function 2 + P,((1 — &)z, &) — he(x) is Ap-harmonic on A.
Moreover, since Pj is a nonnegative kernel, we have

VazeS0,p), P((l-e)x& —he(x)=P(1-¢e)z,&) >0.

By (3.14), 2 = Py((1—¢)z, &) —he(z) is the zero function on S9~!. So, the weak maximum
principle implies that
Vezed, PB(1-¢)z,§) = he(z)

Letting ¢ — 0, we obtain P(.,£) > Py 1(.,§) on A.
iii) The result follows immediately from (2.11). O



Proposition 3.3 Let f be a continuous function on S*~1. Then the function

1

Ppalfl(x) = &

/Sdl Py 1(z,8) f(§wr(§)do(§) (3.15)

is the unique solution in C2(A) N C(A) of the boundary Dirichlet problem

Aru =0, on A
u=f, on S4-1
u=0, on S(0,p).

Proof: The uniqueness follows from the weak maximum principle for Ag-harmonic func-
tions (see [11] or [21]). The inequality (3.13) allowed us to write for any = € A that

_ Okn (2)

+oo
Pk,l[f](m) = ;)un(x)v with un(‘r) = ds, /Sd—l ka(a:,f)f(ﬁ)wk(g)da(&)

By differentiation theorem under integral sign, the functions w, are Ag-harmonic on A.
Moreover, by (3.13) we have

¥, fun(@)] < O fllaon® 70 2|,

This proves that the series ) -, u, converges uniformly on each closed annular region

A, p whenever R €]p, 1[. Then, we conclude that Py 1[f] is Ag-harmonic on A.

On the other hand, it is easy to see that Py 1[f] = 0 on S(0, p).

It remains to prove that for every & € S91 lim,_,¢ Pi1[f](2) = £(€).

- If f € Haym(RY), then w, = 0 if n # m and up(2) = apm(@)f(z) = Pri[f](2).
Therefore, Py 1[f] = f on S4-L.

- If f € Pp(RY), then by (2.9), there exist fi,..., fim, with f; € Ha, n—2;(R?) such that

F(x) = Sz £ ().

This implies that Py 1[f] = f on 5971,
- If f is an arbitrary polynomial function, the result also holds.
- Suppose that f is a continuous function on S¢~! and let p be a polynomial function.
By (3.10) and (3.2) we have
Pralf](@) — f(2)] < [Pralfl(@) — Pralpl(@)] + [Pralpl(z) — p(@)] + [p(z) — f(z)|
<2|f = plloo + [Pralpl(z) — p(x)].

This inequality as well as the Stone-Weierstrass theorem show that lim,_,¢ Py 1[f](z) =
f(€) for every ¢ € S9!, This completes the proof. O

Now, for € A and & € S% 1, consider the functions

Ll —on—n 1 = [Pt
b () = ||| ”(7) ’ nm =p"(1 = agp(2))

9



and
Pio(z Zbkn ) Zen (2, €). (3.16)

By means of the Poisson kernel of the unit ball, we can write

Py o(x, p€) = Pp(x,§) — Pra(z,§). (3.17)

This relation as well as the properties of P, and Py, 1 prove that Py o(., p€) is a nonnegative
Ajg-harmonic function on A with Py o(., p€) = 0 on -1,

Let f be a continuous function on S(0, p) and define the function

Pualflie) = 7 [ Prale.pt)f(pun(€dote), w e A (3.15)

Using (3.17), we can write

Pralfli@) = 3 [ (Pl = Pis (2.) F(p€hen(€)dr(©)

= P[6,.f](x) — Pr1[0,. fl(z).

Here, P;[¢]| denotes the Poisson integral of ¢ and d,.f(z) = f(px).
Then, using Proposition 3.3 and theorem A in [19], we obtain immediately the following
result:

Proposition 3.4 Let f be a continuous function on S(0,p). Then Py o[f] is the unique
solution in C*(A) N C(A) of the boundary Dirichlet problem

Aru =0, on A;
u =0, on §4-1
U:f, OnS(07p>

Definition 3.1 Let f be a continuous function on 0A. We define the Ag-Poisson integral
of f for the annulus A by

Bralfl(x) := Pra[f](x) + Pra[f](2) (3.19)
Remark 3.1 1. We can see that Py a[l] = 1.
2. Using (3.11) and a similar relation for the kernel Py, o, we obtain
9-Pealfl = Poalg-fl,  with g.f(z) = f(g~ ). (3.20)
From Propositions 3.3 and 3.4, we deduce the following main result:

Theorem 3.1 Let f € C(DA). Then the function Py a[f] is the unique solution in C*(A)N
C(A) of the boundary Dirichlet problem

Aru =0, on A;

u=f on 0A.

10



From this theorem and the weak maximum principle for Ag-harmonic function (see [11]),
we obtain the following result:

Corollary 3.2 Let h be a Ay-harmonic function on A and continuous on A. Then,

Vaeed, hz)=Poalhl@)

4 Aji-Green function of the annulus

Our aim in this section is to introduce and study the Green function of the annular region
A= {zeR? p<|z| <1} for the Dunkl-Laplace operator. In the sequel, we will assume
that d + 2y > 2 i.e. Ay > 0 with A\; the constant (2.8).

Let us first recall that the Ag-Newton kernel, introduced in [13], is given by

+o0
Ni(z,y) == /0 pr(t, x,y)dt, (4.1)

with py the Dunkl heat kernel (see [21, 24])

1 — X — XT,Z
pltey) = |2 g ) (42)

2t)d/2+'yck

and ci the Macdonald-Mehta constant given by

- el
LS exp( Ywi (x)dz.
R4 2

According to ([13]), the positive and symmetric kernel N}, takes the following form

1

Ni(sy) = 5o | (el 4l = 2 20) ™ gy 2). (4.3)

Note that if y = 0, py = do (with 6, the Dirac measure at zg € R%) and then

1
Nig(2,0) = ||| 7.
(.0 = 5ol
In addition, for each fixed x € R, the function N (z,.) is Aj-harmonic and of class C>
on R?\ W.z (where W.z is the W-orbit of z), Aj-superharmonic (see below for precise
definition) on whole R? and satisfies

—Ak[Nk(.%', )wk] = 6$, in D/(Rd),

where

-for Q C R? a W-invariant open set, D(Q2) and D'(f2) denote respectively the space of
C*°-functions on €2 with compact support and the space of Schwartz distributions on €.
for f € L} (Q,wk(z)dz), Ap(fwg) is the Schwartz distribution on ) defined by

loc
(Ar(fwr), ») = (fwr, Arp), ¢ € D(Q).

11



Moreover, for any € R?, Ni(z,2) = 4oo. For more details on the properties of the
Ajp-Newton kernel one can see Section 6 in [13].

Let 2 be a W-invariant open subset of RY. Recall that a function u : Q — [—o0, +00] is
Aj-subharmonic if (see [13])

1. wu is upper semi-continuous on {2,
2. w is not identically —oo on each connected component of €2,

3. wu satisfies the volume sub-mean property i.e. for each closed ball B(z,r) C €2, we have

1

@) € Mp)(w) = ps | uths(r oty (44)

Here my, is the measure dmy(z) := wy(z)dz and y — hg(r,z,y) is the nonnegative com-
pactly supported measurable function given by

hig(r, 2,y) = /Rd Lo, (Vll2]2 + [lyl? — 2 (z, 2))dpry (2). (4.5)
We refer to [11] for more details on the kernel hy.

The following result gives some useful facts about the Poisson integral of the Ag-
Newton kernel:

Proposition 4.1

i) For each x € A, the function Py A[Ny(x,.)] is the solution of the Dirichlet problem
Apu =0, on A;
u = Ni(x,.) on JA.

ii) The function (x,y) — Py a[Ni(z,.)](y) is continuous on A x A.

iii) For each fized y € A, the function x — Py A[Ni(x,.)](y) is Ag-harmonic in A.

Proof: i) If x € A, then the function Ny (zx,.) is continuous on JA and by Theorem 3.1,
we obtain the first assertion.

ii) At first, we shall prove the following result

Lemma 4.1 The function (z,y) — Ni(z,y) is continuous on R? x R\ {(z,gz), = €
Re, g € W}.

Proof: Using the following inequality (see [24] Lemma 4.2)

1 e aull2
max e~ Il#—ovll*/4t,

V>0, try) < —
pr(t,z,y) < cr(20) 32 genn

12



we can apply the dominated convergence theorem in formula (4.1) to obtain the result of
the lemma. O

From the first assertion, for each x € A, P, a[N(x,.)] is extendable to a continuous
function on A with Py a[Ng(z,.)] = Ni(z,.) on OA.
Let (w0,%0) € A x A. For every (x,y) € A x A we have

Py, a[Ni(x, )](y) — Pr,a[Ni (o, -)](yo)‘ < ‘Pk,A[Nk(x’ (y) = Pra[Nk(zo, -)](y)‘
+ ‘Pk,A[Nk(xoa (W) — Py, a[Nk(zo, -)](yo)’
< Pit [| K (0, )] ) + P [ B )| )

+ ‘Pk,A[Nk(an W) — Pr,alNk(zo, )] (v0)

)

where Ky, (z,y) := Nik(x,y) — Ni(zo,y)-
We already know that

Jim Py a[Ni (0, .)](y) = Pr,a[Ni(zo, )] (10)-

Now, let ¢ > 0 and R > 0 be such that B(xg,R) C A. Since (x,£) — Ni(x,§) is
uniformly continuous on B(zg, R) x S, we deduce that there exists n > 0 such that

v (x7£) € B(J"Oan) X Sd717 ‘Kxo($,€)‘ = ‘Nk(xag) - Nk(x07€)‘ <e.
Then, using (3.15) as well as the inequalities (3.2) and (3.10), we get for every x € B(zo,n)
and every y € A
1
P [ o)) 0) < 5 [ Pral0 1Ky (0, O €)do(6) < =
The same idea works if we replace the kernel Py, ; by Py o. Finally, we obtain

lim P a[Ni(z,.)](y) = P a[Ne(zo,-)](yo)-
(z,y)—(z0,y0)

That is the function (z,y) — Pi a[Nk(z,.)](y) is continuous on A x A as desired.

iii) According to Corollary 4.6 in [12], it is enough to show that the functions z — uy(x) :=
Py 1[Ni(z,.)](y) and z = vy(x) := Py 2[Ni(,.)](y) satisfy the volume-mean property.

Let then 9 € A and R > 0 such that B(xg, R) C A. As the kernels N, hj; and Py ; are
nonnegative, we can use Fubini’s theorem to obtain

- / Py (5, ) ME N, )] (wo)en (€)do (€)
k Jgd-1

But for any ¢ € S9!, the function Ny(.,¢) is Ap-harmonic on A. Hence, it satisfies the
volume-mean property i.e. ME[Ny(.,€)](x0) = Ng(wo,&). Therefore, we obtain

MB(u)w0) = - [ PO Nelao, ) wo)en(§)d(©)

= Pp1[Ni(zo, )] (y) = uy(2o).

M (uy)(z0) =

13



By the same way, we get that @ — v,(z) = Py 2[Ni(z,.)|(y) is also a Ag-harmonic
function in A. This proves the desired result.
O

Definition 4.1 For x € A, the function Gy A(x,.) defined by

Gra(r,y) == Ng(z,y) — Ppa[Ne(z, )l(y), v € A, (4.6)
is called the Ay-Green function of A with pole x.
The Ap-Green function G}, 4 has the following properties:

Proposition 4.2 Let x € A. Then

1. The function Gy a(x,.) is Ag-harmonic on A\ W.z, is Ag-superharmonic on A and
satisfies
_Ak[Gk,A(x7 )wk] = (Sx m D/(A) (47)

2. G a(z,z) =400 and G a(x,y) < +00 whenever y ¢ W.x .

3. For every & € 0A, limy_,¢ G a(x,y) = 0.

4. For everyy € A, Gi,a(z,y) > 0.

5. For every x,y € A, G a(z,y) = Gia(y, ).

6. For every x,y € A and g € W, Gy a(g9z,9y) = Gi a(x,y).

7. The zero function is the greatest Ay-subharmonic minorant of G a(x,.) on A.

8. The function (z,y) — Gr.a(x,y) is continuous on A x A\ {(x,g9z): x € A,ge W}.

Proof: The first and the second assertions follow from the properties of the Ap-Newton
kernel previously mentioned. In addition, by Proposition 4.1, we easily obtain the third
statement.

4) As limy_,¢cpa G a(z,y) = 0, the weak minimum principle for Aj-superharmonic func-
tions (see [13], Theorem 3.1) implies that G a(x,.) > 0 on A.

If G a(x,yo) = 0 for some yy € A, from the strong maximum principle (see [13]), we must
have Gy a(z,.) is the zero function on A which is impossible because G a(x,z) = +00.
Thus, Gy, 4 is a positive kernel on A x A.

5) Since Ny is a symmetric kernel, we have to prove that

Va,ye A  PpalNe(z,)](y) = PralNk(y, )l(2)-

Let y € A and consider the function

Hy(x) := Py a[Ni (2, )](y) — Prea[Ni(y, )l(2)-

14



From Proposition 4.1 , i) and iii), Hy is a Ag-harmonic function in A. On the other hand,
writing

Hy(z) = Ni(2,y) — Gra(x,y) — Peal[Ni(y, )l(2)
and using the positivity of G}, 4 as well as the symmetry property of the kernel N, we

conclude that

limsup Hy(x) < Np(§,y) — Ni(y, &) = 0.
T—EEDA

Then, by the weak maximum principle, it yields that H, <0 on A. That is, we have
Vm,yGA, Pk,A[Nk(xa )](y) < Pk,A[Nk:(y7)](:E)

By interchanging the role of x and y, we also get the reverse inequality. Finally, we obtain
the desired equality.

6) The result follows immediately from (3.20) and from the relation Ny(gz, gy) = Ni(z,y),
r,y €ERY g e W (see [13]).

7) As Gy a(z,.) is positive on A, we know that the zero function is a Aj-subharmonic
minorant of Gy a(x,.).

Now, let s be a Ag-subharmonic function on A such that s < Gy 4(z,.) on A. Using the
statement 3), we obtain limsup,_,¢cp4 5(2) < 0. Thus from the weak maximum principle
for Ap-subharmonic functions (see [13]) it yields that s <0 on A.

8) The result follows immediately from the statement ii) of Proposition 4.1 and Lemma
4.1. O

In the following result, we will express the Green function via the Ag-spherical har-
monics. More precisely, we have

Theorem 4.1 The Ag-Green function in A is given by

oo n —n—2\,
3 g (Y)|Z]" + i () [[2]| " p x
n=0

We need the following result:
Proposition 4.3 For x,y € R? such that ||y|| < ||z, we have

el
™2™ Zkw (57 77 ) - (4.9)
. 32 T 20) SERL

Proof: Let ||y|| < ||z||. From (4.3), we have
[l 2“/ 2(z,2) | |yl
Nz, y) = 27 [ g = + WX g, (2
T N T )l

i 2Xk i z
- ZH e 22 o () Yay 2)

)l Nyl

[

X Yy
S el (Y,
Zd A+ 20) e (i Tl
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where in the second line, we have used the relation (2.3) and the generating relation (see
for example [8], p. 18)

+o0o
2
(1—2ar+r*) "= Z ( :;')nP#(a)r”, w>0, |r|<1, |a| <1
n=0 ’

and in the last line, we have used

- the inequality sup |Py(x)| < P¥(1) (see [25], Theorem 7.32.1) and the above genera-
xe[—1,1]

tion relation with ¢ = 1 which allowed as to permute the symbols Z and [,

- the fact that B is the image measure of p, by the dilation & — ” 0

- the relation (2.13). O
Proof of Theorem 4.1: By Theorem 3.1, we have

Py, a[Ni(z,)](y) = Pra[Ne(z, )](y) + Pro[Ni(x, )|(y) :== L + L.

e We have
+oo
L= %) [N .
1 §cmﬂmhwﬂdmmwdo
a’“‘ |z |I™ T
n= 0 /Sd 1 Z dk 2\ + 2m) Zk’m(m7g)Zk,n(yaf)wk(é)da(f)

o1

_Q)n Z@mﬁmwﬁwz(M@%M@<WW>
aa@lal” ,

Z dk 2 + 2n)Z ’n(m’y),

where, we have used

-the relation (4.9) with z + y and z < ¢ € S9! in the second line;

-the inequalities (3.13) and [|z|| < 1 in order to the change the symbols [ and ) in the
third line;

-the fact that Ha, n(R?) L Ha, m(R?) whenever m # n and the reproducing formula
(2.10) in the last line.

Note that if ||z|| > p, then from (4.9) it yields that

_ _n T
VeEe ST Nz, pt) = T’ Pl Zk,n(mf)-
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Consequently, by the same way, we obtain

2 _Zb'f 20 [ 2. Nl pn ()00

’2/\kmm

~ b (y ] p x
—Z A IZ i oy 2o (1o Zeal: (€ (€)

_ =2 1 :
—Zb Z )y s P O el SO0

bkn ‘xH 20— npn T
- Z IANTIRTRES S
Z o Zenpy)
This gives the desired formula (4.8). O

Remark 4.1 Using (4.9) and replacing the functions ay, and by, by their expressions,
if x,y € A with ||ly|| < ||z|| we can write

. i Z (HyH2/\k+2n_p2/\k+2n><1_ |’$H2>\k+2n) , (i i)
kA, Y) < (22 + 2n) (1 = pP2 2 ([[[[ly )2+ 5 V]| Ty

This formula generalizes the classical case (if k =0, 2X\g = d — 2) proved in [16].

5 Applications

5.1 Poisson-Jensen formula for A,-subharmonic functions

Our goal now is to prove an analogue of the Poisson-Jensen formula for Ag-subharmonic
functions on 2 O A. Note that a Poisson-Jensen formula has been proved when u is a
C? — Ag-subharmonic function on €2 which contains the closed unit ball (see [15]).

Theorem 5.1 Let u be a Ap-subharmonic function on a W-invariant open set Q O A.
Then,

u(w) = Ppalu / Gralw,y)dva(y), o€ A, (5.1)
where vy, := Ap(uwy) is the Ag-Riesz measure of u (see [13]).

Proof: Let O be a bounded W-invariant open set such that A ¢ O c O C Q . Using
the Riesz decomposition theorem for Ag-subharmonic functions (see [13]), we deduce that
there exists a Ag-harmonic function A on O such that

VeeO, u(z)=h(z)-— /ONk(x,y)dl/u(y) = h(x) — s(x).

17



Then, we have
VaoeA Pyalul(z)= Pyalh](z) — Py als|(z).

From Corollary 3.2, we have Py 4[h] = h on A. Moreover, for z € A, we have
Proals) (@) = Prals] (@) + Prafs](a).
The crucial part here is to show that
Vadg A, PyalNg(z,.)] = Nig(z,.) on A (5.2)
Assume this relation for the moment. By Fubini’s theorem, we have

1

Pull@) = 3 [ Pra@s(€un()da )

= (;_]C/O/Sd—l Pk,l(m,g)Nk(&y)wk(f)da(f)dyu(y)
- /oP’“’l[N’“@’ N(@)dv(y)-

By the same way, we also have

Pysfs)(z) = /O Py o[Ni(y, )] (@) dva(y).

The above relations as well as (5.2) imply that

Poalsl(x) = /O PoalNk(y, ))(2)dva(y)

- / PealNew, @ dva() + [ PoalNely, ](@)dva(y)
A o\A

- / (Ni(2,y) — Groal,y))dva(y) + /O NG i)

A
— [ Nelw)dn) - [ Grate,p)inty)
@] A
This implies the desired Poisson-Jensen formula. Now, it remains to prove (5.2). We will

distinguish three cases.

First case: © ¢ A. As Ni(z,.) is Ap-harmonic on A and continuous on A, we deduce by
Corollary 3.2 that Py a[Ng(z,.)] = Ni(x,.) on A.

Second case: x© € S* 1. Fore > 0 small enough, the function Nk((l + &)z, ) is Ap-
harmonic in the open ball B(0,1+ ¢) D A. Therefore, again by Corollary 3.2, we obtain

Vye A, Np((1+4e)a,y) = PpalNe((1+2e)z,.)](y). (5.3)

Clearly we have lim._,q Nk((l +¢e)z, y) = Ni(z,y) for every fixed y € A. Moreover, using
(4.3) and the fact that supp p, C B(0, |ly||) we can see that

Ni((L+e)z,y) < Ni(z,y), whenever |ly|| < |z]|.

18



Consequently, we can use the dominated convergence theorem to obtain
Vye A, lim PoalNi((1+e)r,))(w) = PoalNee, )]

Hence, letting ¢ — 0 in the relation (5.3), we get the result in this case.

Third case: x € S(0,p). Let 0 < e < 1/2. In this case, the function Ni((1 = &)z, .) is
Aj-harmonic in R?\ B(0, (1 —€)p) D A and then from Corollary 3.2 we deduce that

VyeA, Ni((1-e)z,y)=Ppa[Ne((1-2)z,.)](y).

Note that from (2.3), we can write

]. 2 _Ak
Nule.s) = 5a5 [ (32wt = i)™ donto

where for every z € supp pi, the nonnegative numbers Ag(z) are such that >y Ag(2) =
1. Using the above relation we easily see that

Nie((1 =)z, y) < 22%Nj(z,y), whenever |z < |y,

Finally by same way as in the second case we obtain the result. U

5.2 Positive solution of Aj,-nonlinear elliptic problem on the annulus

In this section, we will investigate the positive continuous solutions of the semilinear
problem

Ap(uwy) = ¢(,u)wy in D'(A),

in the sense that

VeeD), [ u@ap@meis = [ pla)o, u@)oa)d.
We will suppose that ¢ has the form ¢ = ¢1¢2 : A X [0, +oo[— [0, +oo[ with
e ¢ is a nonnegative bounded measurable function on A.
® ¢ is a nonnegative and nondecreasing continuous function on [0, +oo[ with ¢2(0) = 0.

In [3], by using some tools from probabilistic potential theory, the authors have studied
the positive solution on the unit ball B of the semilinear problem

Ag(u) =p(u) inD'(B) and w=f ondB.

Let us denote by CT(A) the convex cone of nonnegative and continuous functions on A.

Theorem 5.2 Let ¢ = ¢1po as above. Then, for every f € CT(OA), the semilinear
Dirichlet problem
Ak (uwg) = o(,u)wg, in D'(A)
(5.4)
u=f, on 0A
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admits one and only one solution u € CT(A). Furthermore, we have

Veed ux)+ /A Gro a0, 1)y, u(y))wor(y)dy = PoalF)().

We begun by showing the uniqueness of the solution. This fact follows immediately from
the following maximum principle type result:

Lemma 5.1 Let u,v € C(A) and let ¢ be a function satisfying the above conditions. If
Ap(uwy) — ¢, wwi < Ag(vwy) — ¢(., v)wg, in D'(A),

limsup (v — u)(z) <0,
z—yE0A

then v < wu in A.

Proof: Let U be the upper semi-continuous function defined by

v(z) — u(x), it z € A;
U(z) = 4 limsup(v—u)(y), ifzc dA
y—r€0A

and z¢ € A be such that U(zg) = max;U.
We have to prove that U(zg) < 0. We suppose the contrary i.e. U(zp) > 0. As U <0 on
0A, this implies that xo ¢ 0A.

Let O be the nonempty open set given by
O:={zxe€A: U(x) >0}

and Q be the connected component of o in O which is also an open set of R%.
To get a contradiction, we claim that it is suffices to establish that

U=U(xp) on . (5.5)

Indeed,
o If O = O (i.e. O is connected), then (5.5) holds on O = . But

00 COAU(A\O)={xr e A, U(x) <0}.
Consequently, using the fact that U is upper semi-continuous and (5.5), we get

VxedO, U(z)= limsup U(y) = U(xo).
y—z,ye0

Thus, we obtain a contradiction.
o If Q2 +# O, then as  is a connected component of O we have 92N O = (). Therefore, we
have 92 C AU A\ O and as above we get a contradiction.
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Now, our aim is to prove that U = U(zg) on Q. For this, we introduce the nonempty
closed set
Qo:={xeQ: Ux)=U(xo)}

Note that
Q= (2N UaerHa) U (2\ UserHa) = (2N UgerHa) U (Ugew 2N g.C),

where C is a fixed Weyl chamber and ¢gC, g € W, are the connected components of
R? \ Uaer He.

Fix £ € Qp and R > 0 such that the open ball B(&, R) is contained in 2. We will distinguish
three possible locations of ¢ depending on the sets E} := {a € R, U(0n§) = U(§)} and
EQZZ{OZGR7 fEHa}CEl.

First case: E; = R. This implies that U(g&) = U(§) > 0 for all ¢ € W. Moreover,
clearly there exists r €]0, R] such that
VgeW, ¥Yaxe B(g¢,r), U(x)>D0. (5.6)

Consider the W-invariant continuous function U" defined on A by

Wiz ':L T :L 1
U (x): |W|QEZV:V9-U() |W|QGZV:VU(9 )-

We easily see that U" has a maximum at the point & with UV (¢) = U(¢) = U(wo).
Furthermore, using the W-invariance property of Ay (i.e. go Ay = Ag o g) and the
hypothesis of the lemma, we obtain

ARV ) = |W1, S g Ak Uwy)]
geW

1

> Wi > 9@ 0) = ¢ u))w] in D'(A).

geW

Now, since U > 0 on BY (¢,7) = Ugew B(g€,7) (from (5.6)) and ¢ is nondecreasing, we
deduce that
AU wr) 20 in DB (E 1),

That is U is weakly Aj-subharmonic on BY (¢,7). But the continuity of U and the Weyl
lemma for Aj-subharmonic functions (see [13], Theorem 5.2) imply that U"W is strongly
Aj-subharmonic on the open W-invariant set BY (¢, r).

Now, if we follow the proof of the strong maximum principle in [13] for the W-invariant
Aj-subharmonic function UW, then we conclude that

U=U() =U(xg), on B(r).

Hence, we have B(§,r) C Q.

Second case: F1 # R and Fy = () i.e. £ ¢ UperHy. So there is a unique go € W such
that £ € QN goC. Clearly, we can suppose that B(§, R) C QN goC.
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Let U" be the W-invariant continuous function defined on BW (¢, R) := Uzew B(g€, R)
by
UW(x) =g.U(z) :=U(g ' .x) whenever z € B(g&,R).

We are going to establish that the function U"W is Aj-subharmonic on BY (¢,7) for some
r > 0 will be chosen later. Again from the continuity of U" and the Weyl lemma, it is
enough to show that U" is Aj-subharmonic in distributional sense.

e Firstly, we have the following decomposition

w %4
=Y U"pgen = Y 0 [Ulpen),
i=1 =1

where g1 = id, g2,...,9n € W are such that 1pw ¢ gy = S 15(g:¢,R)-
e Secondly, for f € C?(B" (¢, R)), we can write A, = Lj, — Ay where

Lif(x) = Af(x)+2 > k() ) Vf@),a)

aER 4 >

and

aER ¢ < :E>
e For ¢ € D(BY (¢, R)) nonnegative, we have

n

(Ak(9i-[ULpe,p)lwr), @) = Z (9:-[Uwilpe, )], D)

=1

(AU wr), @) =

'M:

&
Il
—

(9 [Uwklpe.p)l, L — Aryp)

I

@
I
—

(Uwr, (Lilg; oD 1pe,r) — O 901U p(e,mylwr, Ar())
P

(Uwr, L, ([9; 011 5er))) — (U wi, Ar(e))
-0

= (Uwg, Ak(lg; - ellper) + Ar(lgr " elBer)))

I
kmz

@
Il
i

I
||'M s
I,

3

=1

= Z (Ar(Uwg), 97" 011peR) + Z (Uwr, Ar(lg; " pe.m)))
=1 i=1

> Z ([p(-,v) = o(., wW]wr, [9; ] 1Be R)) +Z (Uwr, Ar(l9; - ¢11pe.R))
=1 =1

(Uwy, A (l9; " 2)1pe.r))s

M-

@
Il
—
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where we have used

- the fact that L commutes with the W-action i.e. Lyog=go Lg, g € W, in the third
line and the fact that it preserves the support in the forth line,

- the W-invariance property of U" which implies that (U"wy, Ax(v)) = 0 in the forth
line,

- the decomposition Ly = A + A in the fifth line,

- the fact that [g; ".¢]1p r) € D(B(£, R)) in the sixth line,

- the hypothesis of the lemma in the seventh line,

- the nondecreasing property of ¢o in the last line.

e As Ay is a symmetric operator in the sense that (Ag(f)wg, ) = (fwg, Ak(¥)), it yields
that

(AU wy), @ >Z (Ap(U)w, [g; "1 Be.R),

Clearly Ax(U)(§) > 0. But, since E; 7é R, we must have A, (U)(§) > 0. Hence, there
exists > 0 such that Ax(U) > 0 on B(&, 7).

Thus, A(UYwyi) > 01in D' (BY (&,7)) i.e. UV is weakly Aj-subharmonic on BY (¢,7) as
desired.

Now, again, if we follow the proof of the strong maximum principle in [13] for the W-
invariant Aj-subharmonic function U%W, then we conclude that

U=U)=U(xg) on B(T).
That is B(&,r) C Q.

Third case: E; # R and Ey # (). Let W/ C W be the isotropy group of £. Here, we
choose R > 0 under the further following assumption

3R < min  ||€ —g€||, with W/ :={g=gW' geW}.
geW/w', g#id

Let S be the W’ -invariant continuous function defined on A by S = qu >gew 9-U.

e Clearly, S has a maximum at the point £ with S(§) = U(§) = U(zp). Furthermore,
using the W-invariance property of Ay as well as the hypothesis the lemma , we get

Ap(Swy) > > [ ,| Y o #(,u))wp in D'(A). (5.7)

e Now, consider the W-invariant continuous function SV defined on
BW(fa R) = UgGWB(g£7 R) = U§6W/W'B(g§7 R)

by
SW(x):=g.S(zx) = S(g '.x) whenever z € B(gé,R) and ge W/w'.

Note that thanks to the previous condition on R, the function SV is well defined.
e Let g1 = id and ga, ..., gm € W/Ww’ such that 1w ¢ gy = >_i%; 1p(g¢,r) and then we can

write . .
= Z SWlB(giﬁ,R) = ZQi-[SlB(g,R)]-
=1 =1
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e Let » € D(BY (€, R)) be nonnegative. Following the same idea as in the second case
(where we replace U by S and U" by S") and using (5.7) we see that we can obtain

(Ap(SYwy), ¢ Z Swi, Ap(¥i)),  with o = [g;7 " @]1p R)- (5.8)
i=1

On the other hand, the W’ -invariance property of the function S implies that

Vi=1,...,m, ¥V a¢€ Es, IBW(g,R) S(x)wwk(x)dx =0.

(o)
Hence, for every i = 1,...,m we have
(Sw, k(1)) = Caer\g, K@)l [ ¢ gy S(a) D=7y (2)de
(&R) (a,x)
= Tacr iz K@l [5en ~agm 2l o) @)wr (@) d
(&R) (o,)?
= (Ap(S)wr, [9; "2l 1pe.R)
As F1 # R and
S(€) = S(0ag) = ,| Y (UE) -Ulog-148) >

g'eWw’

we deduce that Ag(S)(§) > 0. Consequently, there exists » > 0 such that Ax(S) > 0
on B(&,r). This fact, (5.8), the continuity of S and the Weyl lemma show that SV is
Aj-subharmonic on BY (¢, 7).

Now, by the strong maximum principle, we obtain

S=S5&) =U(xg) on B(&r).

Thus, we get
U=U() =U(xo) on B(&,r).

This completes the proof of the lemma. O

The main tool to establish the existence of a solution of the boundary problem (5.4)
is the Schauder fixed point theorem. In order to apply this theorem, we will prove the
following intermediate result:

Proposition 5.1 Let f be a bounded function on A and G a[f] be Ap-Green potential of
f on A given by

Gralf / Gralz,y)f(y)we(y)dy, =€ A (5.9)
Then G alf] belongs to Co(A). Moreover, we have

—Ak(Gk,A[f]wk):fwk m D/(A) (510)
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Before proving this result, we need to show the following lemma:

Lemma 5.2 We have

hm sup g, =0, with 1y, = / Ni(z, y)wi(y)dy (5.11)
—0zea BWY (z,r)

and BY (x,r) := Ugew B(gz, 7).

Proof: Let x € A = A,; and r €]0,p[. Since Ni(z,.) is Ag-harmonic on R?\ W.z and
Aj-superharmonic in R?, by the (super-) mean volume property (4.4) we deduce that

0 < Na,r < / Nk(x7y)wk(y)dy
BO,r+|lz[D\B(O, ||lzl|—r)

= / Ni(z, y)wi(y)dy — / Ni(z,y)wr(y)dy
B(0,r+|z]) .l —r)

< mi[B(0, 7+ 2l])) N2, 0) = m[B(O, ||| )] Ni(,0)
= C Ne(, 0[]l + )™ — ([l = )]

—2)\k
< Cham [l 477 — () = )],

This shows that lim, o sup,c 4 7z = 0 as desired. O

Proof of Proposition 5.1: We can suppose that f is nonnegative. Let ¢ > 0. From (5.11),
there exists r > 0 such that
VeeA ngo<e. (5.12)

e First, we will prove that G 4[f](z) — 0 when z tends to 0A. Let z € A. By (5.12)
we have

Gralf / Gr,a(z,y) f(y)wr(y)dy
- / Gral,y) F(@)wily)dy + / Gron(,y)f (y)on(y)dy
ANBWY (z,r) A\BW (z,r)

< f oo + [flloo / G, y)on(y)dy
A\BW

(z,r)

< el flloe + £l / G, y)on(y)dy.
A\BW

(z,r)
Since for every z € supp py C Co(y), we can write
2] + lyll* = 2 (2, 2) = Xyew Ag(2) Iz — gyl
with Ag(2) > 0 and 3y Ag(z) = 1, we deduce that

2N

B 2dk/\k

Vye A\BW(x,r), 0 < Gra(z,y) < Np(z,y) <
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Hence, we can apply the dominated convergence theorem to obtain

lim Gra(x,y)wr(y)dy = 0.
N k,A(Z, y)wi (y)dy

e Now, we will prove that Gy 4[f] is continuous on A. Fix zp € A and assume that
B(xg,2r) C A. Since f is bounded, it is enough to prove that

lim /A |Gra(z,y) — Gia(xo, y)|wk(y)dy =0 (5.13)

Tr—xTQ

For any x € B(xg, ), we have

/A |Gra(z,y) — Gra(zo, y)|wi(y)dy < / |Gr,a(2,y) — G a(wo, y)|we(y)dy
B

W (zo,7)
+ G () — G (o, ) |ox(w)dy
A\BY (z0,r)
= Il(:C, xo) + IQ(x, 9:0).

As BV (zg,7) € BV (z,2r), by (5.12) we have

I (z, 20) S/ Nk(fv,y)wk(y)der/ Ni(zo, y)wr(y)dy
BW (xq,r) B

W (xo,r)

< Nw2r + Nzgr < 26.

In addition, by the property 8) of Proposition 4.2 we know that the function (z,y) —
G, a(z,y) is continuous on the compact set EW(ZL‘(),T‘) X (Z \ BW(:EO,T)). Thus, there
exists 6 > 0 such that for every = € B(zg,0) and every y € A\ BV (z0,7), we have

|Gr,a(z,y) — Gra(zo,y)| <e.

This implies that

V x € B(xg,0), Ix(z,zp) < 5/ wi(y)dy.
A

Finally, we conclude that Gy [f] € Co(A).
e Let ¢ € D(A). Using Fubini’s theorem, the symmetry property of the Green function
and (4.7) we get

— (A (Groalflwk), ) = —/Af(y) (AR(Groa( y)wr) s o) wi(y)dy

= / FW)e(y)wr(y)dy.
A

This completes the proof. O
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Proof of Theorem 5.2: Fix f € Ct(0A) and

¢1 = inf (Ppalfl(@) — Grald(c)l()

€A
= 1161% (Pealf](z) — ¢2(c2)Groald1](z)), with cp:= mzf’:lx Py alf]-

Let us consider the bounded, closed and convex set
M:={ueC(A): e <u<co}
endowed the uniform topology and the map T : C(A) — C(A) defined by

T(u) == Py alf] = Gra(o(. u)).

Note that since ¢(.,u) : @ > ¢1(2)¢2(u(x)) is bounded, by Proposition 5.1, G 4 (¢(.,u)) €
Co(A) and then T is well defined. Moreover, as ¢9 is nondecreasing, for every u € M and
every x € A, we have

a1 < Ppalfl(@) = Grald(. c2)l(z) < T(u)(@) < Pralfl(z) < co. (5.14)

Hence, we have T (M) C M.

Now, we want to establish that T has a unique fixed point in M by using the Schauder
theorem.

e Firstly, we will prove that T'(M) is relatively compact. For this, we will use the Arzela-
Ascoli theorem. From (5.14), T'(M) is pointwise bounded.

Let xg € A. For every u € M we have

T (u)(z) — T(u)(x0)| < |Pralf](z) — Pralfl(@o)| + |Grald(, w)(x) — Gral(., w)](xo)|
< |Pr,alf1(@) — Pralf](z0)]

+ /A (Gra(,y) — Gra(zo,9)|61(y)da(u(y) )i (v)dy
< |Pr,alfl(@) — Pralf](z0)]

+oa(e)l 01l [ Gha(e.9) = Gralao. ) ().
Therefore, from (5.13) and the continuity of the function Py 4[f], we conclude that T'(M)
is equicontinuous. Finally, T'(M) is relatively compact as desired.

e Secondly, we will prove that 7' : M — M is continuous. Let then (u,) be sequence in
M which converges uniformly to u € M. We have

T (un)(x) = T(u)(z)| < /AGk,A(%y)m(y)!@ﬁz(un(y)) = ¢2(u(y))|wk(y)dy.

But
0 < Gra@,y)¢1(y)|d2(un(y)) — d2(u(y))] < 2¢2(c2)l|P1llocGr,a (@, y)-
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Thus, we can use the dominated convergence theorem to obtain that T'(u,) — T(u)
pointwise. Hence, by equicontinuity, we get the uniform convergence.
Consequently, there exists u € M such that

u = T(u) = Pk7A[f] — Gk,A (¢(, u))

Finally, note that from the properties of Py 4 as well as (5.10), u is a solution of (5.4).

This finishes the proof of the theorem. O
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