Local (sub) Finslerian geometry for the maximum norms in dimension 2 - Archive ouverte HAL
Article Dans Une Revue Journal of Dynamical and Control Systems Année : 2019

Local (sub) Finslerian geometry for the maximum norms in dimension 2

A.-L Ali
  • Fonction : Auteur
Grégoire Charlot

Résumé

We consider specific sub-Finslerian structures in the neighborhood of 0 in R 2 , defined by fixing a familly of vector fields (F1, F2) and considering the norm defined on the non constant rank distribution ∆ = vect{F1, F2} by |G| = inf u {max{|u1|, |u2|} | G = u1F1 + u2F2}. If F1 and F2 are not proportionnal at p then we obtain a Finslerian structure; if not, the structure is sub-Finslerian on a distribution with non constant rank. We are interested in the study of the local geometry of these Finslerian and sub-Finslerian structures: generic properties, normal form, short geodesics, cut locus, switching locus and small spheres.
Fichier principal
Vignette du fichier
art14-05.pdf (439.79 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02004271 , version 1 (01-02-2019)

Identifiants

Citer

A.-L Ali, Grégoire Charlot. Local (sub) Finslerian geometry for the maximum norms in dimension 2. Journal of Dynamical and Control Systems, 2019, ⟨10.1007/s10883-019-09435-8⟩. ⟨hal-02004271⟩
129 Consultations
134 Téléchargements

Altmetric

Partager

More