Unique solvability and exponential stability of differential hemivariational inequalities - Archive ouverte HAL
Article Dans Une Revue Applicable Analysis Année : 2020

Unique solvability and exponential stability of differential hemivariational inequalities

Résumé

In this paper, we study a differential hemivariational inequality (DHVI, for short) in the framework of reflexive Banach spaces. Our aim is three fold. The first one is to investigate the existence and the uniqueness of mild solution, by applying a general fixed-point principle. The second one is to study its exponential stability, by employing the formula for the variation of parameters and inequality techniques. Finally, the third aim is to illustrate an application of our abstract results in the study of an initial and boundary value problem which describes the contact of an elastic rod with an obstacle.
Fichier principal
Vignette du fichier
Li2019.pdf (263.84 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02000423 , version 1 (24-05-2023)

Licence

Identifiants

Citer

Xiaojian Li, Zhenhai Liu, Mircea Sofonea. Unique solvability and exponential stability of differential hemivariational inequalities. Applicable Analysis, 2020, 99, pp.2489-2506. ⟨10.1080/00036811.2019.1569226⟩. ⟨hal-02000423⟩

Collections

UNIV-PERP LAMPS
85 Consultations
67 Téléchargements

Altmetric

Partager

More