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In this paper, we study a differential hemivariational inequality (DHVI, for short) in the framework of 
reflexive Banach spaces. Our aim is three fold. The first one is to investigate the existence and the 
uniqueness of mild solution, by applying a general fixed-point principle. The second one is to study its 
exponential stability, by employing the formula for the variation of parameters and inequality techniques. 
Finally, the third aim is to illustrate an application of our abstract results in the study of an initial and 
bound-ary value problem which describes the contact of an elastic rod with an obstacle.
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1. Introduction

Differential variational inequalities (DVIs, for short) are systems which couple differential or partial
differential equations with a time-dependent variational inequality. They represent a powerful math-
ematical tool used in the analysis of a large number of nonlinear boundary value problems. Various
mathematicalmodels arising in the study of contact and impact problems, electrical circuits with ideal
diodes, economical dynamics and traffic networks, lead to DVIs. For this reason, in the last decade,
a considerable effort has been made in their analysis and numerical approximation.

Introduced in [1], DVIswere systematically discussed in [2], in the framework of Euclidean spaces.
Later, a number of papers have been dedicated to the development of theory ofDVIs and their applica-
tions. Among them, we refer the reader to [3–9], where results on solvability, stability, and bifurcation
for finite-dimensional DVIs have been obtained. The study of DVIs in infinite-dimensional spaces
is more recent. The reason is that, in contrast with the case of finite-dimensional spaces, the study
of DVIs in infinite-dimensional spaces requires regularity results of the solution of the associated
variational inequalities such as measurability, continuity, or condensivity, which enable us to convert
them to differential inclusions. For more details on this topic, we refer to [10–14] and the references
therein.Differential hemivariational inequalities (DHVIs, for short) represent an important extension
of DVIs, which couple differential or partial differential equations with a hemivariational inequality
or a variational-hemivariational inequality.

The stability of solutions is a topic of main interest in the control theory and other areas where
ordinary differential equations and partial differential equations play an important role. The presence
of time-dependent terms in control systems results in differential equations involving transcendental
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terms of the exponential type. The corresponding stability (necessary for the analysis of time systems)
is often a significant matter. Recently, problems of exponential stability for differential systems have
attracted the attention of many researchers, as it results from the references [15–19]. It is notewor-
thy that the results in all aforementioned works concern only the stability of solutions of differential
equations. Nevertheless, many problems arising in engineering, operational research, economical
dynamics, and physical sciences are described by systems of partial differential equations and/or by
DVIs orDHVIs in infinite-dimensional spaces. For such problems, there are very few results concern-
ing the stability of solutions, despite the fact that the need of such kind of results is widely recognized
in the literature. To fill this gap, in this paper, we study the exponential stability problem for a class of
DHVIs in reflexive Banach spaces. To introduce the problem, we need some notations that we present
in what follows.

Everywhere in this work Ewill be a Banach space andU will be a reflexive Banach space, endowed
with the norms ‖ · ‖E and ‖ · ‖U , respectively.Wedenote byU∗ the strong topological dual ofU and by
〈·, ·〉 the duality paring mapping betweenU∗ andU. Moreover,L(U,E) represents the space of linear
continuous operators from U to E. The norm on the space L(U,E) will be denoted by ‖ · ‖L(U,E).
We abbreviate this notation whenU =E, i.e. we writeL(E) instead ofL(E,E) and ‖ · ‖L(E) instead of
‖ · ‖L(E,E). Finally, 0U represents the zero element of U.

Below, I denotes either a bounded interval of the form [0, b] with b> 0 or the unbounded interval
R+ = [0,+∞). Notations C(I;E) and C(I;U) will represent the space of continuous functions on I
with values in E and U, respectively. In the case I = [0, b], these spaces are Banach spaces endowed
with the canonical norm. In the case I = R+, they can be organized in a canonical way as a Fréchet
space, i.e. a complete metric space in which the corresponding topology is induced by a countable
family of seminorms. In the rest of themanuscript, we shall use the standard notation for the Lebesque
and Sobolev spaces.

Let A : D(A) ⊆ E → E be the infinitesimal generator of a C0-semigroup {T(t)}(t≥0) on E and let
f : I × E → E, g : I × E → L(U,E). Consider also the setK ⊂ E, the operators B : U → U∗, h : I ×

E → U∗ and the functions ϕ : U × U → R, J : U → R. We assume that J is locally Lipschitz and we
denote by J0 its generalized (Clarke) directional derivative.With these data, we consider the following
problem.

(DHVI). Find x : I → E and u : I → U such that

x′(t) = Ax(t) + f (t, x(t)) + g(t, x(t))u(t) for t ∈ I, (1)

u(t) ∈ SOL(K;B, h(t, x(t)),ϕ, J) for t ∈ I, (2)

x(0) = x0. (3)

Here SOL(K;B, h(x(t), ·),ϕ, J) stands for the set of solution of the hemivariational inequality

u(t) ∈ K, 〈Bu(t) − h(t, x(t)), v − u(t)〉 + ϕ(u(t), v) − ϕ(u(t), u(t))

+ J0(u(t); v − u(t)) ≥ 0 for all v ∈ K (4)

and, therefore, inclusion (2) stands that u satisfies inequality (4) for t ∈ I. With this remark, we note
that (DHVI) represents a system which couples the differential equation (1) with the hemivaria-
tional inequalities (4), associated to the initial condition (3). Therefore, following the terminology
in [12–14], we refer to (DHVI) as a differential hemivariational inequality. The solution of (DHVI)
is understood in the following sense.

Definition 1.1: A pair of functions (x, u), with x ∈ C(I;E) and u ∈ C(I;U), is said to be a mild
solution of (1)–(3) if

x(t) = T(t)x0 +

∫ t

0
T(t − s)[f (s, x(s)) + g(s, x(s))u(s)] ds for all t ∈ I, (5)
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where u(t) ∈ SOL(K;B, h(t, x(t)),ϕ, J) for all t ∈ I. If (x, u) is a mild solution of (1)–(3), then x(t) is
called the mild trajectory and u(t) is called the variational control trajectory.

We complete this definition with the following one.

Definition 1.2: Amild solution (x, u) of (1)–(3) is called globally exponentially stable if there exists
two constants L> 0 and ω > 0 such that

‖x(t)‖E ≤ Le−ωt for all t ∈ I. (6)

The rest of the manuscript is structured as follows. In Section 2, we recall some basic definitions
and results needed throughout this paper. In Section 3, we state and prove the existence of a unique-
ness solution for (DHVI). The first trait of novelty of our work consists in the fact that, in contrast
with [12–14] (where the unique solvability of the DHVIs is obtained by converting the system into a
differential inclusion), our proof is based on a fixed-point argument used in [20]. Next, in Section 4,
we prove the exponential stability of the solution for the DHVI. The proof is based on arguments
of semigroups of linear continuous operators. Finally, in Section 5, we consider a one-dimensional
model of contact which lead to a differential hemivariational inequality of the form (1.1)–(1.3). Under
appropriate assumptions on the data, we prove the unique solvability of themodel as well as a stability
result. The proofs are based on our abstract results in Sections 3 and 4.

2. Preliminaries

In this section, we review some prerequisites that are necessary in the rest of the manuscript.
A function φ : U → R is (sequentially) lower semicontinuous (l.s.c., for short) if xn → x in U, as

n → +∞ impliesφ(x) ≤ lim infn→+∞ φ(xn). Let J : U → R be a locally Lipschitz function. Follow-
ing Clarke [21], the generalized directional derivative of J at x ∈ U in the direction v ∈ U is defined
by

J0(x; v) := lim sup
λ→0+,ξ→x

J(ξ + λv) − J(ξ)

λ
.

The generalized gradient of J : U → R at x ∈ U is the subset of U∗ given by

∂J(x) := {ξ ∈ U∗ : J0(x; v) ≥ 〈ξ , v〉 ∀ v ∈ U }.

The statement below collects some basic properties of the generalized directional derivative and
gradient.

Lemma 2.1 ([21, Proposition 2.1.2] and [22, Proposition 5]): If J : U → R is a locally Lipschitz
function, then the following statements hold.

(i) For all v ∈ U, one has J0(x; v) = max{〈ξ , v〉 : ξ ∈ ∂J(x)}.
(ii) For every x ∈ U, ∂J(x) is a nonempty, convex, weakly∗ compact subset of U∗ and ‖ξ‖U∗ ≤ Lx for

any ξ ∈ ∂J(x), where Lx > 0 is the Lipschitz constant of J near x.
(iii) For every x ∈ U, the function U ∋ v �→ J0(x; v) ∈ R is positively homogeneous and subadditive,

i.e. J0(x; λv) = λJ0(x; v) for all λ ≥ 0, v ∈ U and J0(x; v1 + v2) ≤ J0(x; v1) + J0(x; v2) for all
v1, v2 ∈ U, respectively.

Next, we proceed with the definition of some classes of operators.
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Definition 2.2 ([23, Definition 3.65]): An operator B : U → U∗ is said to be:

(a) monotone, if for all u, v ∈ U, we have 〈Bu − Bv, u − v〉 ≥ 0;
(b) bounded, if Bmaps bounded sets of U into bounded sets of U∗;
(c) pseudomonotone, if it is bounded and un → u weakly in U with

lim sup〈Bun, un − u〉 ≤ 0

imply lim inf〈Bun, un − v〉 ≥ 〈Bu, u − v〉 for all v ∈ U.

In the sequel, we denote by C(I;E) × C(I;U) the Cartesian product of the spaces C(I;E) and
C(I;U). A typical element of C(I;E) × C(I;U) will be denoted by (x, u) or (x, η). Consider also two
subsets P ⊂ C(I;E) × C(I;U) andQ ⊂ C(I;E) × C(I;U) defined by the equivalences below:

(x, u) ∈ P ⇐⇒ (x, u) satisfies (5) for all t ∈ I, (7)

(x, u) ∈ Q ⇐⇒ (x, u) satisfies (4) for all t ∈ I. (8)

It is clear that the problem (1)–(3) has at least a mild solution iff P ∩ Q �= ∅ and, moreover, it has a
unique solution iff P ∩ Q ⊂ C(I;E) × C(I;U) reduces to a single element, i.e. is a singleton. For this
reason, our aim in what follows is to provide sufficient conditions such that P ∩ Q is a singleton. To
this end, we suppose that the following conditions hold.

For each η ∈ C(I;U) there exists a unique x ∈ C(I;E) such that (x, η) ∈ P . (9)

For each x ∈ C(I;E) there exists a unique η ∈ C(I;U) such that (x, η) ∈ Q. (10)

We now define the operators 	 : C(I;U) → C(I;E), 
 : C(I;E) → C(I;U) and � : C(I;U) →

C(I;U) by equalities

x = 	η ⇐⇒ (x, η) ∈ P . (11)

η = 
x ⇐⇒ (x, η) ∈ Q. (12)

�η = 
	η for all η ∈ C(I;U). (13)

We note that assumptions (9) and (10) guarantee that these operators are well-defined.
Assume that the operator � has a unique fixed point, i.e.

there exists a unique element η∗ ∈ C(I;U) such that �η∗ = η∗. (14)

Let x∗ = 	η∗, i.e. x∗ satisfies the integral equation (5) with u = η∗, and let u∗ = 
x∗, i.e. u∗ is the
solution of the the hemivatiational inequality (4) with x = x∗. Then it is easy to see that the pair
(x∗, u∗) has the regularity C(I;E) × C(I;U) and, moreover, it is a mild solution of the system (1)–(3).
In addition, the uniqueness of the fixed point of � guarantees that the mild solution is unique.

We collect the properties above to deduce the following fixed point principle.

Theorem 2.3: Assume that (9), (10) and (14) hold. Then the DHVI (1)–(3) has a unique mild solution
with regularity C(I;E) × C(I;U).

Theorem 2.3 represent a particular case of [24, Theorem 2], already used in a slightly different
form in [20]. This theorem will play a central role in the study of the existence and uniqueness of
solution for (DHVI) as it results from the next section.
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3. An existence and uniqueness result

In this section, we state and prove the existence of a unique mild solution for the differential
hemivariational inequality (DHVI). To this end, we consider the following assumptions on the data.

H(A)1 The operator A : D(A) ⊂ E → E is the infinitesimal generator of a C0-semigroup
{T(t)}(t≥0) ⊂ L(E).

H(f )1 f : I × E → E is such that
(1) t �→ f (t, x) : I → E is measurable for all x ∈ E;
(2) there is a constant Lf > 0 such that

‖f (t, x) − f (t, y)‖E ≤ Lf ‖x − y‖E for a.e. t ∈ I, all x, y ∈ E;

(3) there exists a function a ∈ L1(I;R+) such that

‖f (t, 0E)‖E ≤ a(t) for a.e. t ∈ I.

H(g)1 g : I × E → L(U,E) is such that
(1) t �→ g(t, x) : I → L(U,E) is continuous for all x ∈ E;
(2) there is a constant Lg > 0 such that

‖g(t, x) − g(t, y)‖L(U,E) ≤ Lg‖x − y‖E for a.e. t ∈ I, all x, y ∈ E;

(3) there exists a continuous function d : I → R+ such that

‖g(t, 0E)‖L(U,E) ≤ d(t) for all t ∈ I.

H(K) K is a closed convex subset of U such that 0U ∈ K.
H(B) B : U → U∗ is such that

(1) it is pseudomonotone;
(2) is strongly monotone, i.e. there existsmB > 0 such that

〈Bv1 − Bv2, v1 − v2〉 ≥ mB‖v1 − v2‖
2
U for all v1, v2 ∈ U.

H(ϕ) The functional ϕ : U × U → R is such that
(1) ϕ(η, ·) : U → R is convex and lower semicontinuous for all η ∈ U;
(2) ϕ(u, λv) = λϕ(u, v) for all u, v ∈ U, λ > 0;
(3) ϕ(v, v) ≥ 0 for all v ∈ U;
(4) there exists αϕ > 0 such that

ϕ(η1, v2) − ϕ(η1, v1) + ϕ(η2, v1) − ϕ(η2, v2) ≤ αϕ‖η1 − η2‖U‖v1 − v2‖U

for all η1, η2, v1, v2 ∈ U.
H(J) The locally Lipschitz functional J : U → R is such that

(1) there exist κ0, κ1 ≥ 0 such that

‖∂J(v)‖U∗ ≤ κ0 + κ1‖v‖U for all v ∈ U;

(2) there exists αJ > 0 such that

J0(v1; v2 − v1) + J0(v2; v1 − v2) ≤ αJ‖v1 − v2‖
2
U for all v1, v2 ∈ U.

H(h) h : I × E → U∗ is such that
(1) h(·, x) : I → U∗ is continuous for all x ∈ E;
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(2) there is a constant Lh > 0 such that

‖h(t, x) − h(t, y)‖U∗ ≤ Lh‖x − y‖E for all t ∈ I, x, y ∈ E;

(3) there exists a constant ℓ > 0 such that

‖h(t, x)‖U∗ ≤ ℓ for all t ∈ I, x ∈ E.

H(0) x0 ∈ E.

To provide our main result in this section, we recall two preliminary lemmas which will be useful
to guarantee the validity of assumptions (9) and (10).

Lemma 3.1: Let E be a Banach space, assume that A : D(A) ⊂ E → E satisfies condition H(A)1 and,
moreover, assume that

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f̃ : I × E → E is such that

(a) the mapping t �→ f̃ (t, x) : I → E is measurable, for all x ∈ E;
(b) for any compact set � ⊂ I there exists L� > 0 such that

‖̃f (t, x1) − f̃ (t, x2)‖E ≤ L�‖x1 − x2‖E
for all x1, x2 ∈ E, t ∈ �.

(15)

Then, for each x0 ∈ E, there exists a unique function x ∈ C(I;E) such that

x(t) = T(t)x0 +

∫ t

0
T(t − s)̃f (s, x(s)) ds for all t ∈ I. (16)

Lemma 3.1 represents a well-known result in the study of differential equation in Banach spaces.
It states the existence of a unique mild solution of the Cauchy problem

ẋ(t) = Ax(t) + f̃ (t, x(t)) for all t ∈ I, (17)

x(0) = x0. (18)

Its proof can be found in [25, Theorem 6.1.2], for instance.

Lemma 3.2: Let U be a reflexive Banach space, assume that H(K), H(B), H(ϕ)(1), (4) and H(J) are
satisfied and, moreover, assume that

αϕ + αJ < mB. (19)

Then, for each z ∈ U∗ there exists a unique element u such that

u ∈ K, 〈Bu, v − u〉 + ϕ(u, v) − ϕ(u, u) + J0(u; v − u) ≥ 〈z, v − u〉 for all v ∈ K. (20)

The proof of Lemma 3.2 is based on a surjectivity result for pseudomonotone operators combined
with the properties of the subdifferential and the Banach fixed point theorem. It can be found in [26]
or in [24, Theorem 84].

Next, we proceed with the following result.
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Lemma3.3: LetUbe a reflexive Banach space and assume thatH(K), H(B), H(ϕ)(1), (4), H(J), H(h)
and (19) hold. Then, for each x ∈ C(I;E), there exists a unique function u ∈ C(I;U) such that

u(t) ∈ K, 〈Bu(t), v − u(t)〉 + ϕ(u(t), v) − ϕ(u(t), u(t)) + J0(u(t); v − u(t))

≥ 〈h(t, x(t)), v − u(t)〉 for all v ∈ K, t ∈ I. (21)

Moreover, if u1, u2 ∈ C(I;U) represent the solution of the inequality (21) for the functions x1, x2 ∈

C(I;E), respectively, then the following inequality holds:

‖u1(t) − u2(t)‖U ≤
Lh

mB − αϕ − αJ
‖x1(t) − x2(t)‖E for all t ∈ I. (22)

In addition, ifH(ϕ)(2), (3) are also satisfied, then the solution satisfies the bound

‖u(t)‖U ≤
1

mB − αJ
(‖B0U‖U∗ + ℓ + κ0) for all t ∈ I. (23)

Proof: Let x ∈ C(I;E) be given and let t ∈ R+ be fixed. It follows from Lemma 3.2 that there exists a
unique element u(t) which solves (21) at the given moment t.

We now show that the function t �→ u(t) : I → U is continuous. To this end, consider t1, t2 ∈ I
and, for the sake of simplicity in writing, denote x(ti) = xi, u(ti) = ui for i= 1,2. Using (21) we obtain

u1 ∈ K, 〈Bu1, v − u1〉 + ϕ(u1, v) − ϕ(u1, u1) + J0(u1, v − u1)

≥ 〈h(t1, x1), v − u1〉 for all v ∈ K, (24)

u2 ∈ K, 〈Bu2, v − u2〉 + ϕ(u2, v) − ϕ(u2, u2) + J0(u2, v − u2)

≥ 〈h(t2, x2), v − u2〉 for all v ∈ K. (25)

We take v = u2 in (24) and v = u1 in (25), then we add the resulting inequalities to obtain that

〈Bu1 − Bu2, u1 − u2〉 ≤ ϕ(u1, u2) − ϕ(u1, u1) + ϕ(u2, u1) − ϕ(u2, u2)

+ J0(u1; u2 − u1) + J0(u2; u1 − u2)

+ 〈h(t1, x1) − h(t2, x2), u1 − u2〉. (26)

We now write

〈h(t1, x1) − h(t2, x2), u1 − u2〉

= 〈h(t1, x1) − h(t1, x2), u1 − u2)〉 + 〈h(t1, x2) − h(t2, x2), u1 − u2〉,

then we use assumption H(h) to see that

〈h(t1, x1) − h(t2, x2), u1 − u2〉

≤ Lh‖x1 − x2‖E‖u1 − u2‖U + ‖h(t1, x2) − h(t2, x2)‖U∗‖u1 − u2‖U . (27)

Next, inequalities (26), (27) and assumptions H(B)(2), H(ϕ)(4) and H(J)(2) yield

(mB − αϕ − αJ) ‖u1 − u2‖U

≤ Lh ‖x1 − x2‖E + ‖h(t1, x2) − h(t2, x2)‖U∗ . (28)

Inequality (28) combined with the assumptions H(h)(1) and (19) implies that t �→ u(t) : I → U is a
continuous function. This concludes the existence part of the lemma. The uniqueness part is a direct
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consequence of the uniqueness of the solution u(t) of the hemivariational inequality (21), at each
t ∈ I, guaranteed by Lemma 3.3.

Next, we check that the inequality (22) hold. To this end, suppose that x1, x2 ∈ C(I;E) and let t ∈ I
be given. Using arguments similar to those used in the proof of inequality (28) we deduce that

(mB − αϕ − αJ) ‖u1(t) − u2(t)‖U ≤ Lh ‖x1(t) − x2(t)‖E

which implies (22).
Finally, we check that the solution satisfies the bound (23). To prove this, let t ∈ I be fixed and take

v = 0U ∈ K in (21). It follows from assumptions H(ϕ)(2), (3) that

〈Bu(t), u(t)〉 ≤ J0(u(t);−u(t)) + 〈h(t, x(t)), u(t)〉.

Now, we write Bu(t) = Bu(t) − B0U + B0U . Then, using conditionH(B)(2) and hypothesis H(h)(3),
we deduce that

mB‖u(t)‖
2
U ≤ (‖B0U‖U∗ + ℓ)‖u(t)‖U + J0(u(t);−u(t)). (29)

On the other hand, taking v1 = u(t) and v2 = 0U in H(J)(2), we have

J0(u(t);−u(t)) ≤ αJ‖u(t)‖
2
U − J0(0U ; u(t)). (30)

Moreover, it follows from Lemma 2.1(i) that

− J0(0U ; u(t)) ≤ |J0(0U ; u(t))| ≤

∣∣∣ max
ξ∈∂J(0)

〈ξ , u(t)〉
∣∣∣

≤ max
ξ∈∂J(0U )

|〈ξ , u(t)〉| ≤ max
ξ∈∂J(0U )

‖ξ‖U∗‖u(t)‖U .

and, using condition H(J)(1) with v = 0U yields

− J0(0U ; u(t)) ≤ κ0‖u(t)‖U . (31)

Now, we combine inequalities (30) and (31) to see that

J0(u(t);−u(t)) ≤ αJ‖u(t)‖
2
U + κ0‖u(t)‖U . (32)

Finally, we substitute (32) in (29) to deduce that

(mB − αJ)‖u(t)‖U ≤ ‖B0U‖U∗ + ℓ + κ0.

This shows that inequality (23) holds, which completes the proof of the lemma. �

We proceed with the following existence and uniqueness result.

Lemma 3.4: Let E be a Banach space and assume thatH(A)1, H(f )1, H(g)1 andH(0) hold. Then, for
each η ∈ C(I;U), there exists a unique function x ∈ C(I;E) such that

x(t) = T(t)x0 +

∫ t

0
T(t − s)[f (s, x(s)) + g(s, x(s))η(s)] ds. (33)

Assume now that x1, x2 ∈ C(I;E) represent the solution of problem (33) corresponding to the functions
η1, η2 ∈ C(I;U), respectively. Moreover, assume that there exists ̺ > 0 such that

‖η1(t)‖U ≤ ̺, ‖η2(t)‖U ≤ ̺ for all t ∈ I. (34)

Then, for each compact set � ⊂ I, there exists a constant M� > 0 such that

‖x1(t) − x2(t)‖E ≤ M�

∫ t

0
‖η1(s) − η2(s)‖U ds for all t ∈ �. (35)
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Proof: First, let η ∈ C(I;U) be given and consider the function f̃ : I × E → E defined by

f̃ (t, x) = f (t, x) + g(t, x)η(t) for all t ∈ I, x ∈ E.

We use assumptions H(f )1 and H(g)1, to see that f̃ satisfies condition (15). Therefore, the existence
and uniqueness part of Lemma 3.4 is a direct consequence of Lemma 3.1.

Now, suppose that η ∈ C(I;U) is such that

‖η(t)‖U ≤ ̺ for all t ∈ I (36)

where ̺ > 0 is given. Consider a compact set � ⊂ I, denote

T� := sup
s∈�

‖T(s)‖L(E) (37)

and let t ∈ �. We use (33), assumptions H(f )1 and H(g)1, inequality (36) and notation (37) to obtain
the following inequalities:

‖x(t)‖E ≤ ‖T(t)‖L(E)‖x0‖E +

∫ t

0
‖T(t − s)‖L(E)

[
‖f (s, x(s))‖E + ‖g(s, x(s))η(s)‖E

]
ds

≤ T�‖x0‖E + T�

∫ t

0

[
‖f (s, x(s)) − f (s, 0E)‖E + ‖f (s, 0E)‖E

+ (‖g(s, x(s)) − g(s, 0E)‖L(U,E) + ‖g(s, 0E)‖L(U,E))‖η(s)‖U

]
ds

≤ T�‖x0‖E + T�

∫ t

0

(
Lf ‖x(s)‖E + a(s) + [Lg‖x(s)‖E + d(s)]̺

)
ds.

Denote

ρ� := T�‖x0‖E + T�

(
‖a‖L1(�,R+) + ‖d‖L1(�,R+)̺

)
. (38)

Then, it follows from the above that

‖x(t)‖E ≤ ρ� + T�(Lf + Lg̺)

∫ t

0
‖x(s)‖E ds.

Then by the Gronwall inequality, we obtain that

‖x(t)‖E ≤ ρ�e
T�(Lf +Lg̺)t for all t ∈ �. (39)

We shall use the bound (39) in the proof of inequality (35).
Next, assume that η1, η2 ∈ C(I;U) are two functions which satisfy condition (19) and denote by

x1, x2 ∈ C(I;E) the solution of problem (33) corresponding to η1, η2 ∈ C(I;U), respectively. Let t ∈

�. Using (33) we have

xi(t) = T(t)x0 +

∫ t

0
T(t − s)[f (s, xi(s)) + g(s, xi(s))ηi(s)] ds for all i = 1, 2.

This implies that

x1(t) − x2(t) =

∫ t

0
T(t − s)

[
f (s, x1(s)) − f (s, x2(s)) + g(s, x1(s))η1(s) − g(s, x2(s))η2(s)

]
ds

9



and, therefore, using (37) we deduce that

‖x1(t) − x2(t)‖E ≤ T�

∫ t

0

[
‖f (s, x1(s)) − f (s, x2(s))‖E + ‖g(s, x1(s))η1(s) − g(s, x2(s))η2(s)‖E ds

(40)
We now use assumptions H(f )1 to see that

‖f (s, x1(s)) − f (s, x2(s))‖E ≤ Lf ‖x1(s) − x2(s)‖E for all s ∈ [0, t]. (41)

On the other hand, assumptions H(g)1 and (34) yield

‖g(s, x1(s))η1(s) − g(s, x2(s))η2(s)‖E

≤ ‖g(s, x1(s))η1(s) − g(s, x2(s))η1(s)‖E

+ ‖g(s, x2(s))η1(s) − g(s, x2(s))η2(s)‖E

≤ ‖g(s, x1(s)) − g(s, x2(s))‖L(U,E)‖η1(s)‖U

+ ‖g(s, x2(s))‖L(U,E)‖η1(s) − η2(s)‖U

≤ Lg̺‖x1(s) − x2(s)‖E

+
[
‖g(s, x2(s)) − g(s, 0E)‖L(U,E) + ‖g(s, 0E)‖L(U,E)

]
‖η1(s) − η2(s)‖U

≤ Lg̺‖x1(s) − x2(s)‖E +
[
Lg‖x2(s)‖E + d(s)

]
‖η1(s) − η2(s)‖U

and, using (39) we deduce that

‖g(s, x1(s))η1(s) − g(s, x2(s))η2(s)‖E ≤ Lg̺‖x1(s) − x2(s)‖E

+
[
Lgρ�e

T�(Lf +Lg̺)s + d(s)
]
‖η1(s) − η2(s)‖U for all s ∈ [0, t]. (42)

We now substitute inequalities (41) and (42) in (40) to find that

‖x1(t) − x2(t)‖E ≤ T�(Lf + Lg̺)

∫ t

0
‖x1(s) − x2(s)‖E ds

+ T�

(
sup
s∈�

d(s) + Lgρ�e
T�(Lf +Lg̺)t

)∫ t

0
‖η1(s) − η2(s)‖U ds. (43)

Let

L� := sup
s∈�

s, Q� := sup
s∈�

d(s), (44)

M� = T�(Q� + Lgρ�e
T�(Lf +Lg̺)L� )eT�(Lf +Lg̺)L� (45)

We now use the Gronwall argument in inequality (43) and notations (44), (45) to see that (35) holds.
�

We now recall with the following fixed-point result.

Lemma 3.5: Let U be a Banach space and S : C(I;U) → C(I;U) be an operator with the following
property: for any compact set � ⊂ I there exists M� > 0 such that

‖Su1(t) − Su2(t)‖U ≤ M�

∫ t

0
‖u1(s) − u2(s)‖U ds for all u1, u2 ∈ C(I;U), t ∈ �. (46)

Then, S has a unique fixed point, i.e. there exists a unique element η∗ ∈ C(I;U) such that Sη∗ = η∗.
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Note that here and below, when no confusion arises, we use the shorthand notation Su(t) to rep-
resent the value of the function Su at the point t, i.e. Su(t) = (Su)(t). An operator which satisfies
condition (46) is called a history-dependent operator. This terminology was introduced in [27] and
since it was used inmany papers, see [23, 24, 28] and the references therein. Lemma 3.5 was proved in
[29]. Its proof can also be found in [24, Ch.2], together with various properties of history-dependent
operators.

We now are in the position to present our existence and uniqueness result for the solution of the
DHVI (1)–(3).

Theorem 3.6: Assume that E is a Banach space, U is a reflexive Banach space and, moreover, assume
that H(A)1, H(f )1, H(g)1, H(K), H(B), H(ϕ), H(J), H(h), H(0) and (19) hold. Then the DHVI
(1)–(3) has a unique mild solution (x, u) ∈ C(I;E) × C(I;U).

Proof: We use Theorem 2.3. First, it follows from Lemma 3.4 that condition (9) holds. Next,
Lemma 3.3 guarantees that condition (10) holds, too.

We now prove that the operator � defined by (14) is a history-dependent operator. To this end
we note that, a carefully analysis of the definitions (11)–(13) reveals that the operator � : C(I;U) →

C(I;U) is defined by equality

�η = uxη for all η ∈ C(I;U). (47)

Here, for each η ∈ C(I;U), xη ∈ C(I;E) represents the solution of the integral Equation (33), guaran-
teed by Lemma 3.4, and uxη , represents the solution of the hemivariational inequality (21) for x = xη,
guaranteed by Lemma 3.3.

Let η1, η2 ∈ C(I;U) and, for simplicity, denote xη1 = x1, xη2 = x2, uxη1
= u1, uxη2

= u2. Then, it
follows from (47) that

�η1 = u1, �η2 = u2. (48)

Moreover, inequalities (22) and (23) imply that

‖u1(t) − u2(t)‖U ≤
Lh

mB − αϕ − αJ
‖x1(t) − x2(t)‖E for all t ∈ I. (49)

‖u1(t)‖U ≤ ̺, ‖u2(t)‖U ≤ ̺ for all t ∈ I (50)

where, here and below, ̺ := (1/(mB − αJ))(‖B0U‖U∗ + ℓ + κ0).
Let � be a compact subset of I. Then, inequalities (50) allows us to use Lemma 3.4 in order to

obtain that

‖x1(t) − x2(t)‖E ≤ M�

∫ t

0
‖η1(s) − η2(s)‖U ds for all t ∈ �. (51)

We now combine definition (48) with inequalities (49), (51) to see that

‖�η1(t) − �η2(t)‖U ≤
LhM�

mB − αϕ − αJ

∫ t

0
‖η1(s) − η2(s)‖U ds for all t ∈ �.

This inequality shows that � is a history-dependent operator and, therefore, using Lemma 3.5 we
deduce that it has a unique fixed point.

It follows from above that conditions (9), (10), (14) in Section 2 are verified. Therefore, we are in
a position to use Theorem 2.3 in order to conclude the proof. �
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4. Exponential stability of (DHVIs)

In this section, we analyze the exponential stability of the (DHVI). To this end, we need to reinforce
part of the assumption in Theorem 3.6. More precisely, we consider the following assumptions.

H(A)2 A : D(A) ⊂ E → E satisfies condition H(A1) and, moreover, there are two positive num-

bers w, M such that ‖T(t)‖L(E) ≤ Me−wt for every t ≥ 0.
H(f )2 f : I × E → E satisfies condition H(f1) with a(t) = 0 for all t ∈ I.
H(g)2 g : I × E → L(U,E) satisfies condition H(g1) with d(t) = 0 for all t ∈ I.

Note that condition H(A)2 show that the semigroup generated by A is exponentially stable. Our
second main result concerning the exponential stability of (DHVI) is formulated as follows.

Theorem 4.1: Assume that E is a Banach space, U is a reflexive Banach space, H(A)2, H(f )2, H(g)2,
H(K), H(B), H(ϕ), H(J), H(h), H(0) and (19) hold and, moreover, assume that

M[Lf (mB − αJ) + Lg(‖B0U‖U∗ + ℓ + κ0)] < w(mB − αJ). (52)

Then the mild solution of (1)–(3) is globally exponentially stable.

Proof: Denote by (x, u) ∈ C(I;E) × C(I;U) the mild solution of problem (1)–(3). Recall that its
existence and uniqueness is guaranteed by Theorem 3.6. Moreover, using Definition 1.1 it follows
that

x(t) = T(t)x0 +

∫ t

0
T(t − s)[f (s, x(s)) + g(s, x(s))u(s)] ds for all t ∈ I, (53)

and, in addition, Lemma 3.3 yields

‖u(t)‖U ≤
1

mB − αJ
(‖B0U‖U∗ + ℓ + κ0) for all t ∈ I. (54)

Let t ∈ I. We now use (53), assumptions H(A)2, H(f )2 and H(g)2 and the bound (54) to derive the
estimate

‖x(t)‖E ≤ ‖T(t)‖L(E)‖x0‖E +

∫ t

0
‖T(t − s)‖L(E)[‖f (s, x(s))‖E + ‖g(s, x(s))u(s)‖E] ds

≤ Me−wt‖x0‖E +

∫ t

0
Me−w(t−s)

[
Lf +

Lg

mB − αJ
(‖B0U‖U∗ + ℓ + κ0)

]
‖x(s)‖E ds.

This inequality implies that

ewt‖x(t)‖E ≤ M‖x0‖E +
M[Lf (mB − αJ) + Lg(‖B0U‖U∗ + ℓ + κ0)]

(mB − αJ)

∫ t

0
ews‖x(s)‖E ds.

and, therefore, the Gronwall inequality yields

ewt‖x(t)‖E ≤ M‖x0‖Ee
M[Lf (mB−αJ)+Lg(‖B0U‖U∗+ℓ+κ0)]/(mB−αJ)t ,

which implies that

‖x(t)‖E ≤ M‖x0‖Ee

(
M[Lf (mB−αJ)+Lg(‖B0U‖U∗+ℓ+κ0)]/(mB−αJ)−w

)
t . (55)
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Denote

L = w − M‖x0‖E, ω = w −
M[Lf (mB − αJ) + Lg(‖B0U‖U∗ + ℓ + κ0)]

(mB − αJ)
(56)

and note that assumptionsH(A)2 and (52) guarantee thatM> 0 andω > 0, respectively.We combine
inequality (55) with notation (56) to conclude that

‖x(t)‖E ≤ Le−ωt .

We now use this inequality and Definition 1.2 to conclude the proof. �

5. A one-dimensional example

The abstract results in Sections 3–4 are useful in the study of various initial and boundary value
problems. To provide an example, we consider in this section the following one-dimensional problem.

Problem P . Find the functions x : I × (0, 1) → R and u : I × (0, 1) → R such that

x′(t, z) = δxzz(t, z) − cx(t, z) + f ∗(t, x(t, z)) + g∗(t, x(t, z))u(t, z)) for all t ∈ I, a.e. z ∈ (0, 1),

(57)

xz(t, 0) = x(t, 1) = 0, for all t ∈ I, (58)

Buzz(t, z) + h∗(t, x(t, z)) = 0, for all t ∈ I, z ∈ (0, 1), (59)

u(t, 1) ≤ k,
−Buz(t, 1) = λ + j(u(t, 1)), if u(t, 1) < k
−Buz(t, 1) ≥ λ + j(u(t, 1)), if u(t, 1) = k

}
, (60)

u(t, 0) = 0, for all t ∈ I, (61)

x(0, z) = x0(z) a.e. z ∈ (0, 1). (62)

Here, and below in this section, the prime denotes the derivative with respect to the time variable
t and the subscripts represent the derivative with respect to the spatial variable z, i.e. x′ = ∂x/∂t,
uz = ∂u/∂z and xzz = ∂2x/∂z2. Equations (57) and (58) represents the state equation, (59)–(61) is
the control inequality and (62) is the initial condition.

Problem P represents the variational formulation of a mathematical model which describes the
contact of an elastic rod with an obstacle. A brief description of the physical setting is the following.
An elastic rod occupies, in the reference configuration, the interval [0, 1] on the Oz axis. The rod is
fixed in z= 0, is acted by body forces of density h∗ along Oz, and its extremity z= 1 is in contact
with an obstacle made of a rigid body covered by a deformable layer of thickness k> 0. This layer
behaves rigid-elastically, i.e. it allows penetration, but only when the magnitude of the stress in the
contact point reaches a critical positive value, the yield limit, denoted by λ. In addition, the reaction
of this layer depends on the penetration, this dependence being described by a given continuous
function j. The contact process is time-dependent, the time interval of interest is I and can be bounded
or unbounded. The material’s behaviour is described with the elasticity operator B, assumed to be
nonlinear.

Details concerning the previous contact model (59)–(61), including the passage from the classical
formulation of the problem can be found in [22] and, therefore, we skip them. Nevertheless we note
that, in contrast with the model presented in [22], in this current paper we assume that the force h∗

depends on an additional variable x, which satisfies a diffusion equation of the form (57) and (58),
associated to the initial condition (62). Here δ > 0 is the diffusion coefficient, the parameter c> 0
is used to regulate the convergence speed, f ∗ and g∗ are arbitrary external forcing functions, and x0
represents the initial data. Fromphysical point of view x could be interpreted as being the temperature
field, the adhesion field the amoisture field. Formore details we refer the reader to [30], wheremodels
of contact governed by a parameter x which satisfies a diffusion equation have been considered.
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We now turn to the analysis of Problem P . To this end, we define the operator A : D(A) ⊂

L2(0, 1) → L2(0, 1) as follows

(Ax)(z) = δxzz(z) − cx(z),

D(A) = {x ∈ H2(0, 1) | xz(0) = 0, xz(1) = 0}.
(63)

It is well know from [25] that A satisfies assumption H(A)1 on the space E = L2(0, 1). Moreover, the
semigroup T(t) = etA generated by A is exponential stable, that is,

‖T(t)‖L(L2(0,1)) ≤ e−(c+δπ2/4)t for all t ∈ I. (64)

This shows that assumption H(A)2 holds, too.
Next, we define the space U by equality

U = {v ∈ H1(0, 1) | v(0) = 0}, (65)

which is a real Hilbert space endowed with the inner product

(u, v)U =

∫ 1

0
ux vx dx for all u, v ∈ U

and the associated norm ‖ · ‖U . Recall that the completeness of the space (U, ‖ · ‖U) follows from the
Friedrichs-Poincaré inequality. Moreover, from the Sobolev trace theorem, it follows that

|v(1)| ≤ ‖v‖U for all v ∈ U. (66)

We denote by U∗ and 〈·, ·〉 the dual of U and the duality pairing between U∗ and U, respectively.
We now consider the following assumptions on the data.

H(f ∗) f ∗ : I × R → R is such that
(1) there exists Lf ∗ > 0 such that

|f ∗(t1,ϑ1) − f ∗(t2,ϑ2)| ≤ Lf ∗
(
|t1 − t2| + |ϑ1 − ϑ2| for all t1, t2 ∈ I, ϑ1, ϑ2 ∈ R;

(2) f ∗(t, 0) = 0 for all t ∈ I.
H(g∗) g∗ : I × R → R is such that

(1) there exists Lg∗ > 0 such that

|g∗(t1,ϑ1) − g∗(t2,ϑ2)| ≤ Lg∗

(
|t1 − t2| + |ϑ1 − ϑ2| for all t1, t2 ∈ I, ϑ1, ϑ2 ∈ R;

(2) g∗(t, 0) = 0 for all t ∈ I.
H(B) B : (0, 1) × R → R is such that

(1) there exists LB > 0 such that

|B(z,ϑ1) − B(z,ϑ2)| ≤ LB|ϑ1 − ϑ2| for all ϑ1, ϑ2 ∈ R, a.e. z ∈ (0, 1);

(2) there existsmB > 0 such that

(B(z,ϑ1) − B(z,ϑ2))(ϑ1 − ϑ2) ≥ mB|ϑ1 − ϑ2|
2 for all ϑ1, ϑ2 ∈ R, a.e. z ∈ (0, 1);

(3) the map z �→ B(z,ϑ) is measurable on (0, 1), for each ϑ ∈ R;
(4) B(z, 0) = 0 for each z ∈ (0, 1).

H(j) The functional j : R → R is such that
(1) j is continuous;

14



(2) there are κ0, κ1 ≥ 0 such that

|j(θ)| ≤ κ0 + κ1|θ | for all θ ∈ R;

(3) there exists αj > 0 such that θ �→ αjθ + j(θ) is nondecreasing;
(4) j(θ) ≥ 0 if θ > 0 and j(θ) = 0 if θ ≤ 0.

H(h∗) h∗ : I × R → R is such that
(1) there exists Lh∗ > 0 such that

|h∗(t1,ϑ1) − h∗(t2,ϑ2)| ≤ Lg∗

(
|t1 − t2| + |ϑ1 − ϑ2|

)
for all t1, t2 ∈ I, ϑ1, ϑ2 ∈ R;

(2) there exists a constant ℓ > 0 such that

‖h(t,ϑ)‖L2(0,1) ≤ ℓ for a.e. t ∈ I, ϑ ∈ R.

H(0) x0(z) ∈ L2(0, 1).

Note that condition H(j)(4) is imposed from mechanical reasons. It shows that when there is a
contact between the rod and the obstacle then the reaction of the foundation is toward the rod and
when there is separation, it vanishes.

Next, define the set K, the operator B : U → U∗ and the functions ϕ : U × U → R, q : R → R,
J : U → R, f : I × E → E, g : I × E → L(E,U), h : I × U → U∗ by equalities

K = {u ∈ U | u(1) ≤ k}, (67)

〈Bu, v〉 =

∫ 1

0
Buzvz dz for all u, v ∈ U, (68)

ϕ(u, v) = λv(1) for all u, v ∈ U, (69)

q(r) =

∫ r

0
j(s) ds for all r ∈ R, (70)

J(v) = q(v(1)) for all v ∈ U, (71)

f (t, x)(z) = f ∗(t, x(z)) for all t ∈ I, x ∈ E, a.e. z ∈ (0, 1), (72)

[g(t, x)u](z) = g∗(t, x(z))u(z) for all t ∈ I, x ∈ E, u ∈ U, a.e. z ∈ (0, 1), (73)

〈h(t, x), v〉 =

∫ 1

0
h∗(t, x(z)) v(z) dz, for all t ∈ I, x ∈ E, v ∈ U. (74)

In the sequel, to derive the variational-hemivariational formulation of Problem P , we let v ∈ K and
perform an integration by parts on Equation (59) with v(0) = u(0) = 0 and the condition (60) to
obtain

∫ 1

0
Buz(vz − uz) dz + λv(1) − λu(1) + j(u(1))(v(1) − u(1)) ≥

∫ 1

0
h∗(t, x(t, z))(v − u) dz. (75)

Recall that the assumptions H(f ∗)–H(0) above guarantee that these functions and operators are well
defined. For instance, we precise that the definition (73) has to be understood in the following sense:
for all t ∈ I and x ∈ E, g(t, x) represents the operator which associate at each function u ∈ U the
function g(t, x)u : (0, 1) → R defined by [g(t, x)u](z) = g∗(t, x(z))u(z) a.e. z ∈ (0, 1). It is easy to
see that this function belongs to E and the operator u �→ g(t, x)u is linear and continuous, i.e. it
belongs to L(U,E). Also, note that the operator B and the function h∗ are defined by using Riesz’s
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representation theorem. The function q could be nonconvex. Nevertheless, it is a regular function in
the sense of Clarke. Moreover, it satisfies the equality

q0(s; θ) = j(s)θ , for all s, θ ∈ R, (76)

where q0(s; θ) denotes the generalized directional derivative of J at the point s in the direction θ .
On the other hand, using a standard argument (Theorem 3.47 in [23] or Lemma 8 (vi) in [24], for
instance), we have

J0(u; v) = q0(u(1); v(1)) for all u, v ∈ V , (77)

where J0(u; v) denotes the generalized directional derivative of J at the point u in the direction v.
With these preliminaries, using notation (67)–(71) and equalities (74)–(77), it is easy to see that

inequality (59)–(61) could be written, equivalently, as follows:

u(t) ∈ K, 〈Bu(t), v − u(t)〉 + ϕ(u(t), v) − ϕ(u(t), u(t))

+ J0(u(t); v − u(t)) ≥ 〈h(t, x(t)), v − u(t)〉 for all v ∈ K, (78)

for all t ∈ I. Moreover, in what follows we skip the dependence of the variables on z, i.e. we simply
write x(t) instead of x(t, z) and u(t) instead of u(t, z). Therefore, using the definition (63) of the
operator A, we deduce that Problem P can be formulated, equivalently, in a form of the following
differential variational-hemivariational inequality.

(DHVI)P . Find x : I → E and u : I → U such that

x′(t) = Ax(t) + f (t, x(t)) + g(t, x(t))u(t), a.e. t ∈ I, (79)

u(t) ∈ SOL(K;B, h(t, x(t)),ϕ, J), for all t ∈ I, (80)

x(0) = x0. (81)

Recall that here SOL(K;B, h(x(t), ·),ϕ, J) stands for the set of solution of the hemivariational
inequality (78).

The existence of a unique solution of the system (79)–(81) is provided by the following result.

Theorem 5.1: Assume thatH(f ∗), H(g∗), H(B), H(j), H(h∗) andH(0) hold. Moreover, assume that
mB > αj. Then, Problem (79)–(81) has a unique mild solution (x, u) ∈ C(I;E) × C(I;U)).

Proof: The proof of is based on Theorem 3.6 with the choice E = L2(0, 1),U being the space defined
by (65). For this reason, we check in what follows the validity of the conditions of the theorem.

First, note that as already mentioned, the operator A satisfies condition H(A)2. Moreover, condi-
tions H(f ∗) and H(g∗) imply that the functions f and g defined by (72) and (73) satisfy conditions
H(f )2 andH(g)2, respectively, with Lf = Lf ∗ and Lg = Lg∗ . The proof is based on standard arguments
and, therefore we skip it. Next, since k> 0 it is clear that condition H(K) holds. We now use condi-
tionH(B) of the functionB to see that the operator B given by (68) satisfies assumptionH(B)(2)with
mB = mB . Moreover, B satisfies

‖Bu − Bv‖U∗ ≤ LB‖u − v‖U , ∀ u, v ∈ L2(0, 1),

i.e. is Lipschitz continuous. We conclude from here that B satisfies assumption H(B)(1), too.
In addition, it is easy to see that the functionϕ defined by (69) satisfies conditionH(ϕ)withαϕ = 0.

Moreover, using the standard arguments on subdifferential calculus, we see that the function J defined

16



by (71) satisfies the hypothesis H(J). In fact, using (77), (76) and (66) we have

J0(u; v − u) + J0(v, u − v) = (j(u(1)) − j(v(1))(u(1) − v(1))

≤ αj|u(1) − v(1)|2 ≤ αj‖u(1) − v(1)‖2U ,

Finally, we note that assumption H(h∗) on the function h∗ guarantees that the function h defined
by (74) satisfies condition H(h) and we recall that condition H(0) holds. We also note that inequality
mB > αj implies that the smallness condition (19) holds, too.

We are now in a position to apply Theorem 3.6 to conclude the proof. �

Now, we also proceed with the following globally exponentially stability result.

Theorem 5.2: Assume thatH(f ∗), H(g∗), H(B), H(j), H(h∗) andH(0) hold. Moreover, assume that
mB > αj and, in addition,

Lf ∗(mB − αj) + Lg∗(ℓ + κ0) <

(
c +

δπ2

4

)
(mB − αj). (82)

Then the mild solution of (79)–(81) is globally exponentially stable.

Proof: Note that (82) combined with inequality (64) and assumption H(B)(4) guarantees that
condition (52) holds. Therefore, Theorem 5.2 is a direct consequence of Theorem 4.1. �
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