Prediction in high dimensional linear models and application to genomic selection under imperfect linkage disequilibrium - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Prediction in high dimensional linear models and application to genomic selection under imperfect linkage disequilibrium

Résumé

Genomic selection (GS) consists in predicting breeding values of selection candidates, using a large number of genetic markers. An important question in GS is the determination of the number of markers required for a good prediction. When the genetic map is too sparse, it is likely to observe some imperfect linkage disequilibrium: the alleles at a gene location and at a marker located nearby vary. We tackle here the problem of imperfect linkage disequilibrium and we present theoretical results regarding the accuracy criteria, the correlation between predicted value and true value. Illustrations on simulated data and on rice real data are proposed.
Fichier principal
Vignette du fichier
RabierGruseaPartialLDHal.pdf (741.96 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01987222 , version 1 (20-01-2019)
hal-01987222 , version 2 (20-03-2019)
hal-01987222 , version 3 (24-11-2019)
hal-01987222 , version 4 (20-10-2020)

Identifiants

  • HAL Id : hal-01987222 , version 3

Citer

Charles-Elie Rabier, Simona Grusea. Prediction in high dimensional linear models and application to genomic selection under imperfect linkage disequilibrium. 2019. ⟨hal-01987222v3⟩
717 Consultations
266 Téléchargements

Partager

More