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Summary. Genomic selection (GS) consists in predicting breeding values of selection
candidates, using a large number of genetic markers. An important question in GS is the
determination of the number of markers required for a good prediction. When the genetic
map is too sparse, it is likely to observe some imperfect linkage disequilibrium: the alleles
at a gene location and at a marker located nearby vary. We tackle here the problem of
imperfect linkage disequilibrium and we present theoretical results regarding the accuracy
criteria, the correlation between predicted value and true value. Illustrations on simulated
data and on rice real data are proposed.
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1. Introduction and background

Genomic Selection (GS), an extremely popular technique in genetics (Meuwissen et al.
(2001)), consists in predicting breeding values of selection candidates using a large num-
ber of genetic markers. The goal is to predict the future phenotype of young candidates
as soon as their DNA has been collected. These predictions should be accurate in order
to allow us to select the best candidates for the breeding program. GS was first applied
to animal breeding (see Hayes et al. (2009) for a review), and GS is nowadays exten-
sively investigated in plants. For instance, we can mention studies on apple (Muranty et
al. (2015)), eucalyptus (Tan et al. (2017)), japanese pears (Minamikawa et al. (2018)),
strawberry (Gezan et al. (2017)), banana (Nyine et al. (2018)) and coffea (Ferrao et al.
(2018)). Note that, in medicine, the predictive ability of complexe diseases with the help
of genome data, is also a topic of large interest (e.g. Lee et al. (2017), Abraham et al.
(2014)). All these application fields make the topic “genomic prediction” very exciting
for geneticists and statisticians, eager to propose new tools for improving the predictions
(see Momen et al. (2018)).

From a methodological point of view, GS relies on the expectation that each Quan-
titative Trait Locus (so-called QTL) will be highly correlated with at least one marker



(Schulz-Streeck et al. (2012)), because of the high density of markers. A QTL is a sec-
tion of the DNA that contains one or more genes influencing a quantitative trait which
is able to be measured. For many years, geneticists focused on Genome Wide Associa-
tion Studies (looking for associations between traits and section of the DNA), but were
unable to detect QTLs with very small effects, responsible for the variation of complex
traits (governed by small-effects QTLs). As a consequence, in GS, the goal is now to
perform predictions using a large number of markers, without having to detect QTLs.
In genetics, this correlation between a QTL and a marker is named Linkage Disequi-
librium (LD): it refers to the non independence of alleles at 2 different loci (see Durett
(2008) for more details). A usual estimator of LD is the square of Pearson correlation.
However, several factors are known to be responsible for artificial LD in a population
(e.g. relatedness, population structure...). In Mangin et al. (2012), the authors proposed
new LD estimators (so called novel measures) that correct bias due to relatedness and
population structure. These measures seem to be key elements in GS and they are also
present in our formula (Rabier et al. (2016)) on prediction in GS.

The aim of this paper is to generalize our recent theoretical study on the accuracy of
genomic prediction (Rabier et al. (2018)) in GS to the case of imperfect LD. Indeed, in
that study, we focused only on perfect LD: QTLs were located exactly on a few markers.
When QTLs do not match marker locations, we generally observe imperfect LD since
the alleles generally vary at a QTL location and at a marker located nearby. Imperfect
LD is a topic of interest since, for some species, the number of markers remains too
small to cover the huge genome size. In that sense, this density of markers is unable to
perfectly tag QTL locations.

An underlying research topic in GS is the determination of the number of markers
required for implementing GS. In their study on maize population, Zhang et al. (2015)
showed that the prediction of a complex trait required a large number of markers (around
58000 markers thanks to Genotyping By Sequencing after filtering), whereas 200 markers
were sufficient for predicting a simple trait. In our study on GS in raygrass (Rabier et
al. (2016)), we noticed that 24957 markers were unable to cover the entire genome (2.7
Gb). Furthermore, in a recent study on GS in coffea, Ferrao et al. (2018) showed that
predictions relying on 4000 markers gave similar results as those based on 35000 markers.
In this context, we propose to tackle here the problem of imperfect LD in GS.

In what follows, we will focus on Ridge regression since it is one of the most popular
method chosen by geneticists to perform predictions. We will investigate GS in rice
with the help of the data of Spindel et al. (2015). We will concentrate on the rice
flowering time (days to 50% flowering) collected in Los Banos, Philippines, during the dry
season 2012. The data and programs, used in our study, are available at http://charles-
elie.rabier.pagesperso-orange.fr/doc/articles.html .

1.1. A linear model
Let us introduce the statistical model associated to GS. The quantitative trait is observed
on n training (TRN) individuals and we denote by Y1, . . . , Yn the observations. p markers
lie on the genome. In what follows, X is a matrix of size n × p, with p > n (high
dimensional setting) and ′ denotes transposition. The i-th row of X, written as x′i =
(Xi,1, ..., Xi,p), represents the genome information at each marker available for the i-th
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individual. m QTLs lie on the genome, having an effect on the quantitative trait. For
1 ≤ j ≤ m, β?j refers to the j-th QTL effect. We denote X? the analogue of X at QTL
locations.

We assume the following causal linear model for the quantitative trait (i.e. the
phenotype):

Y = X?β? + ε, (1)

where Y = (Y1, ..., Yn)′, β? = (β?1 , ..., β
?
m)′, ε ∼ N(0, σ2

eIn), In is the identity matrix of
size n and σ2

e refers to the environmental variance. Moreover, X? is independent of ε.

In this manuscript, we propose an analysis conditional on x1, . . . , xn, x?1, . . . , x?n.
Note that, before imposing this conditioning, some correlation is present between the
matrices X? and X: for instance, due to the fixed genome size, xi and x?i are necessarily
correlated. Simulated data will be generated accordingly. In what follows, r (resp. r?)
will denote the rank of the matrix X (resp. X?), and Rrows(X) (resp. Rrows(X

?)) will
refer to the linear space generated by the rows of X (resp. X?). In the same way, Rcol(X)
and Rcol(X

?) will denote the corresponding linear spaces spanned by the columns.

For the sake of readability, we drop the dependence on n in all the notations.

1.2. Introducing a test individual
A supplementary individual, so-called test (TST) individual (denoted new) is genotyped
but not phenotyped. Using same notations as those used for the TRN population, x?new
denotes the column vector containing the genome information at the m QTLs of the
individual new. As a result, the quantitative trait Ynew can be written

Ynew = x?′new β
? + εnew,

where εnew ∼ N(0, σ2
e).

We suppose that x?new, εnew and ε are all independent. Using same notations as
before, xnew denotes the random genome information at markers, and xnew and x?new
are correlated because of the fixed genome size responsible for some genetic linkage.

1.3. Introducing the accuracy and the prediction model
In GS, we are interested in predicting either the genotypic value x?′new β

?, or the phe-

notypic value Ynew. In both cases, an estimator Ŷnew is constructed from a prediction
model learned on n TRN individuals. Ŷnew is a function of the random variables xnew
and ε. Then, the quality of the prediction is evaluated according to some accuracy
criteria, i.e. the correlation between predicted and true values. This criteria is a key
element in genetics: it plays a role in the rate of genetic gain. Indeed, the accuracy
is one component present in the breeders equation (see for instance Lynch and Walsh
(1998)).

The phenotypic accuracy, ρph, also called predictive ability, is defined in the following



way (e.g. Visscher et al. (2010))

ρph :=
Cov

(
Ŷnew, Ynew

)
√

Var
(
Ŷnew

)
Var (Ynew)

, (2)

whereas the genotypic accuracy, ρg, is defined as (e.g. Daetwyler et al. (2008, 2010))

ρg :=
Cov

(
Ŷnew, x

?′
newβ

?
)

√
Var

(
Ŷnew

)
Var (x?′newβ

?)

. (3)

Note that, when x?new, εnew and ε are all independent, these two accuracies are linked by
the relationship ρph/ρg = h, where h is the squared root of the heritability of the trait:

h2 :=
Var (x?′new β

?)

Var (Ynew)
. (4)

In what follows, we set σ2
G = Var (x?′new β

?). As a consequence, we have the relationship
h2 = σ2

G/
(
σ2
G + σ2

e

)
.

Besides, the oracle situation will denote the settings where the QTLs locations and
their effects are known. Then, under the oracle situation, the natural predictor is
Ŷ oracle
new = x?′new β

?. As a result, according to formula (2), the oracle accuracies are
the following

ρoracleg = 1 , ρoracleph = h.

In this study, we focused on the accuracy criteria. However, in Supplementary Material,
we present a few results regarding the L2 prediction loss, more familiar for statisticians.

As in our previous study (Rabier et al, 2018), we will focus on Ridge regression
(Tihonov (1963); Hoerl et al. (1970)), called random regression best linear unbiased pre-
dictor (RRBLUP) in genetics. It is known that RRBLUP is equivalent to genomic best
linear unbiased predictor (GBLUP). The Ridge estimator, based on genome information
at markers, presents the advantage to be suitable in a high dimensional setting (i.e.
p > n, see e.g. Shao and Deng (2012) and Bühlmann (2013)). Its expression is the
following:

β̂ :=
(
X ′X + λIp

)−1
X ′Y, (5)

where λ refers to a regularization (or tuning) parameter, and Ip denotes the identity
matrix of size p×p. Before presenting our roadmap, let us introduce a notation regarding
perfect LD.

Notations 1. Under perfect LD, the m QTLs are located on a few markers and β
denotes the sparse vector of size p, containing the components of β?.
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1.4. Our contributions and roadmap

Since this work is a generalization of the results of Rabier et al. (2018), we will follow
the same outline as in our previous article. This should make the reading easier and
should help the reader to compare the different results.

Our study starts in Section 2, by recalling a recent formula on the accuracy, suitable
under imperfect LD. We also introduce two singular value decompositions, the one of the
design matrix (i.e. at markers), and the one of the causal matrix (i.e. at genes). Then,
we state our Theorem 1, the analogue of Theorem 1 of Rabier et al. (2018), dealing
here with imperfect LD. This theorem is somewhat essential since the other results,
appropriate under imperfect LD, are built on it.

Section 3 is devoted to the case where TRN and TST are sampled from the same
probability distribution. Theorem 2 introduces an estimation ρ̂g of ρg that does not
require the genome information of TST individuals. According to this theorem, the
projection of the regression function X?β? on Rcol(X) is a key element for the genotypic
accuracy. From Theorem 2, we can retrieve results under perfect LD: the key factor
becomes the projection of the signal β on Rrows(X) (as in Rabier et al. (2018)). Lemma
1 introduces, under imperfect LD, a lower bound for ρ̂g: it takes into account a global
projection (same weights on each subspace) ofX?β? on the space spanned by the columns
of X. Lemma 2 assumes that the signal β? is spread out uniformly on each subspace of
Rrows(X

?). The oracle accuracy is reached as soon as the limit of a loss factor (so called
1-ξ(n)) is equal to zero. Lemma 2 relies on different assumptions than the ones assumed
in Lemma 2 of Rabier et al. (2018). In that sense, our present Lemma 2 is not exactly
a generalization to imperfect LD.

In order to make the reading easier, the section that investigates the case where
TRN and TST are not sampled from the same probability distribution, has been placed
in Supplementary material (cf. Section 7 of Supplementary Material). The genome
information of TST individuals needs to be known in order to compute the estimator ρ̂g
of ρg.

Section 4 of this manuscript introduces the modified predictor ˆ̃ρg of Rabier et al.
(2018), that may improve the quality of the prediction. Recall that it relies on the
projection of Y on a well chosen subspace ofRcol(X). Lemma 3 proposes an estimation of
that predictor’s accuracy: as expected, under imperfect LD, it depends on the projection
of the regression function X?β? on the chosen subspace. After having introduced bounds
for ˆ̃ρg in Lemma 4, we will give a result (the analogue of Lemma 6 of Rabier et al. (2018)),

that allows to compare ˆ̃ρg and ρ̂g under imperfect LD.
To conclude, in Section 5, we will illustrate our theoretical results on simulated and

real data. We propose to investigate a topic in GS that has not been studied before (as
far as we know): the accuracy of the prediction when the genetic map of TRN differs
from the one of TST. In particular, we suggest to consider a more dense map for TRN
than for TST: the dense TRN map will help to estimate the nuisance parameters X?

and β? required to compute our estimation ρ̂g. This concept relies on the expectation
that QTLs will be in perfect LD with markers under this dense TRN map, which is not
the case for the TST map (imperfect LD). Contrary to our “perfect LD” study where
the Adaptive LASSO (Zou (2006)) was found to be the best substitute for β, we found
here that the LASSO (Tibshirani (1996)) was the best substitute for β? when a sparse



TST map was considered. Moreover, the Adaptive LASSO was more appropriate for a
dense TST map.

Finally, performances of the modified ridge estimator are also illustrated, and we
analyze real data of Spindel et al. (2015) on GS in rice, considering different density of
markers. With the help of our “imperfect LD” proxies, we show that geneticists can
evaluate the accuracy of their prediction and figure out if they should redensify their
genetic map to improve the reliability of their predictions.

In the Supplementary Material, we present the mathematical proofs of our results,
and show extra results regarding real data. In Section 11 of the Supplementary Material,
we also present a few results regarding the L2 prediction loss.

2. General expression for the accuracy

2.1. An existing formula suitable under imperfect LD
Since we have the well-known relationship(

X ′X + λIp
)−1

X ′ = X ′
(
XX ′ + λIn

)−1
, (6)

the computation of β̂ only requires the inversion of a n× n matrix.
In this context, the predictor for the so-called new individual is the following:

Ŷnew := x′newβ̂ = x′newX
′V −1Y ,where V = XX ′ + λIn.

In what follows, we will assume that Y , Ynew, xnew, x?new, the columns of X and the
columns of X? are centered.

Assuming that x1, . . . , xn, x?1, . . . , x?n are known, and that ε, xnew, x?new and εnew
are random, the genotypic accuracy, according to formula (5) of Rabier et al. (2016),
has the following expression:

ρg =
β?′ E (x?newx

′
new)X ′V −1X?β?{

σ2
eE
(
‖x′newX ′V −1‖2

)
+ β?′X?′V −1XVar (xnew)X ′V −1X?β?

}1/2
σG

(7)

where ‖.‖ is the L2 norm.
We introduce the following notations

A1 := β?′ E
(
x?newx

′
new

)
X ′V −1X?β? , A2 := σ2

eE
(∥∥x′newX ′V −1

∥∥2
)

A3 := β?′X?′V −1XVar (xnew)X ′V −1X?β? , A4 := σ2
G.

2.2. SVD decomposition
Following Shao and Deng (2012) and Bühlmann (2013), let us consider the singular value
decomposition of X:

X = PDQ′, (8)

where P is a n× r matrix satisfying P ′P = Ir, Q is a p× r matrix satisfying Q′Q = Ir,
and D = Diag (d1, . . . , dr) with d1 ≥ . . . ≥ dr > 0. The columns of Q (resp. P )
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constitute an orthogonal basis of the space spanned by the rows (resp. columns) of
X. In what follows, Q(s) will denote the s-th column of Q, and as a consequence
Rrows(X) = Span

{
Q(1), . . . , Q(r)

}
. By construction QQ′ is an idempotent matrix (since

QQ′QQ′ = QQ′), and as mentioned in Shao and Deng (2012), we have the relationship

QQ′β̂ = β̂.

In other words, since the projection of β̂ onto Rrows(X) is still β̂, the ridge estimator is
always in Rrows(X).

In the same way, let us introduce the singular value decomposition of X?:

X? = P ?D?Q?′, (9)

where P ? is a n × r? matrix satisfying P ?′P ? = Ir? , Q
? is a m × r? matrix satisfying

Q?′Q? = Ir? , and D? = Diag (d?1, . . . , d
?
r?) with d?1 ≥ . . . ≥ d?r? > 0.

2.3. Results
Our first theorem can be viewed as the analogue of Theorem 1 of Rabier et al. (2018),
dealing with imperfect LD.

Theorem 1. Let us assume that ε, xnew, x?new and εnew are random. Then, condition-
nally on X and X?, the genotypic accuracy has the following expression

ρg =
A1

(A2 +A3)1/2 (A4)1/2
,

where

A1 =

r∑
s=1

ds
d2
s + λ

β?′ E
(
x?newx

′
new

)
Q(s)P (s)′

r?∑
j=1

d?jP
?(j)Q?(j)′β? ,

A2 = σ2
e

r∑
s=1

d2
s

(d2
s + λ)2

E
(∥∥∥Q(s)Q(s)′xnew

∥∥∥2
)

,

A3 =

 r∑
s=1

ds
d2
s + λ

Q(s)P (s)′
r?∑
j=1

d?jP
?(j)Q?(j)′β?

′ E (xnewx′new)

×

 r∑
s=1

ds
d2
s + λ

Q(s)P (s)′
r?∑
j=1

d?jP
?(j)Q?(j)′β?

 ,

A4 = β?′E
(
x?newx

?′
new

)
β?.

The proof is given in Section 1 of the Supplementary Material. The phenotypic
accuracy is obtained by replacing the term A4 at the denominator by A4 + σ2

e .

Remark 1. Note that we can express the L2 prediction loss as follows:

E
{

(x′newβ̂ − x?′newβ?)2
}

= A2 +A3 +A4 − 2A1 .



We will prove this formula in Section 11.1 of the Supplementary Material.

Note that an alternative expression for A1 is the following:

A1 =

r∑
s=1

ds
d2
s + λ

β?′ E
(
x?newx

′
new

)
Q(s)Q(s)′Q(s)P (s)′X?β?. (10)

Recall that under perfect LD, the QTLs are located on a few markers and β denotes
the sparse vector of size p containing the components of β?. According to the above
formula (10), we can notice that the term dsQ

(s)Q(s)′β from Theorem 1 of Rabier et al.
(2018) has been replaced here by the quantity Q(s)Q(s)′Q(s)P (s)′X?β?. In other words,
under imperfect LD, we have to consider the projection of the vector P (s)′X?β?Q(s) on
Span

{
Q(s)

}
, whereas under perfect LD, the projection of dsβ on Span

{
Q(s)

}
is taken

into account. Same remark holds for A3 at the denominator.

Remark 2. Since formulas obtained under imperfect LD are more general, we can easily
retrieve formulas suitable under perfect LD from formulas obtained under imperfect LD.
We just have to consider that the regression function is the same (i.e. X?β? = Xβ),
and X?β?Q(s) is obviously equal to dsβ.

In what follows we are interested in estimating the genotypic accuracy ρg. The con-
sistency of estimators of A1, A2, A3 and A4 guarantees the consistency of the estimator
of ρg, thanks to Slutsky’s lemma in the matrix case. However, as mentioned in our
previous study, finding consistent estimators of A1, A3 and A4 is challenging in the high
dimensional setting: the covariance matrix Σ needs to be estimated. As a consequence,
we have chosen the empirical covariance estimator of Σ, as generally used by geneticists
in practice.

3. Estimation when TRN and TST samples come from the same probability dis-
tribution

In this section, let us consider the case where the TRN and TST samples come from the
same probability distribution. In this context, using the empirical covariances X?′X/n,
X ′X/n and X?′X?/n as estimates for the covariances E (x?newx

′
new), E (xnewx

′
new) and

E (x?newx
?′
new) appearing in Theorem 1, we obtain the following theorem.

Theorem 2. Let us assume that x1, . . . , xn and xnew are independent and identically
distributed (i.i.d.). In the same way, let us assume that x?1, . . . , x?n and x?new are i.i.d.
Then, conditionnally on X and X?, and assuming that ε, xnew and εnew are random,
an estimation of the genotypic accuracy is

ρ̂g =
Â1(

Â2 + Â3

)1/2 (
Â4

)1/2
,
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where

Â1 =
1

n

r∑
s=1

d2
s

d2
s + λ

∥∥∥P (s)P (s)′X?β?
∥∥∥2
, Â2 =

σ2
e

n

r∑
s=1

d4
s

(d2
s + λ)2

,

Â3 =
1

n

r∑
s=1

d4
s

(d2
s + λ)2

∥∥∥P (s)P (s)′X?β?
∥∥∥2
, Â4 =

1

n

r?∑
`=1

d?2`

∥∥∥Q?(`)Q?(`)′β?∥∥∥2
.

The proof is given in Section 2 of the Supplementary Material.

We can see that the term d2
s

∥∥Q(s)Q(s)′β
∥∥2

from Theorem 2 of Rabier et al. (2018)

has been replaced by the quantity
∥∥P (s)P (s)′X?β?

∥∥2
in the expressions of Â1 and Â3.

As said before, this theorem is more general than Theorem 2 of Rabier et al. (2018):
we can easily switch from imperfect LD formulas to perfect LD formulas as soon as we
impose X?β? = Xβ.

This estimation ρ̂g relies only on phenotypes and markers of TRN. As a consequence,
this accuracy estimation can be used to evaluate GS accuracy before genotyping of the
TST individuals. The nuisance parameters X? and β? can be estimated with a penalized
likelihood method, by considering a more dense map for TRN than for TST. We refer
to the applications in Section 5 for more details.

Let us now give bounds for the quantity ρ̂g.

Lemma 1 (Bounds on ρ̂g). Using same assumptions as in Theorem 2, we always have

‖PP ′X?β?‖2 mins
d2s

d2s+λ√
σ2
e r + ‖PP ′X?β?‖2 maxs

d4s
(d2s+λ)2

√
‖Q?Q?′β?‖2 max` d

?2
`

≤ ρ̂g ≤ ρoracle
g .

The proof is given in Section 3 of the Supplementary Material.
Note that Â1 and Â3 can be rewritten in the following way:

Â1 =
1

n

r∑
s=1

β?′
d2
s

d2
s + λ

r?∑
`=1

Q?(`)d?`P
?(`)′P (s)

r?∑
j=1

d?jP
(s)′P ?(j)Q?(j)′β? ,

Â3 =
1

n

r∑
s=1

d4
s

(d2
s + λ)2

(
r?∑
`=1

d?`P
(s)′P ?(`)Q?(`)′β?

)2

.

3.1. Asymptotic study of ρ̂g when n→ +∞ and p > n with m bounded
Recall that d?1 ≥ d?2 ≥ . . . ≥ d?r? > 0 are the singular values of X?, and that d1 ≥ d2 ≥
. . . ≥ dr > 0 are the singular values of X. Note that, since the number of QTLs m is
bounded, the rank r? is bounded. In contrast, the rank r may diverge because we let p
and n tend to +∞ in our high dimensional setting.

In order to study asymptotic properties of ρ̂g, we consider that

d?21 ∼ nψ with 0 < ψ ≤ 1,

d?2r? ∼ nη with η ≤ ψ ≤ 1 and η and ψ not depending on n.



Recall that un ∼ vn means that
un
vn
−→ 1 when n→∞. Besides, we assume that

∥∥Q?Q?′β?∥∥2 ∼ n2τ , with τ < η and τ not depending on n.

Although r? is bounded in our study, these conditions are somewhat inspired from
Shao and Deng (2012) and Fan and Lv (2008).

Let us further consider a regularization parameter λ such as λ→∞ and λ = o
(
d?21

)
.

Let us consider the following partition Ω?
1, Ω?

2, Ω?
3 of {1, . . . , r?}:

Ω?
1 :=

{
`
∣∣λ := o(d?2` )

}
, Ω?

2 :=

{
`

∣∣∣∣d?2` ∼ 1

C?`
λ with C?` > 0

}
, Ω?

3 :=
{
`
∣∣d?2` = o(λ)

}
.

Note that Ω?
1 contains at least the index 1. Moreover, let Ω1, Ω2, Ω3 be the following

partition of {1, . . . , r}:

Ω1 :=
{
s
∣∣λ = o(d2

s)
}

, Ω2 :=

{
s

∣∣∣∣d2
s ∼

1

Cs
λ with Cs > 0

}
, Ω3 :=

{
s
∣∣d2
s = o(λ)

}
.

Recall that in our previous “perfect LD” study, we considered only these last 3 sets.

3.1.1. The projected signal is spread out uniformly on each subspace
For every ` ∈ {1, . . . , r?}, we define the following sets Ω`

k, k = 1, 2, 3 :

Ω`
k :=

{
s ∈ Ωk |

∥∥∥P (s)P (s)′P ?(`)
∥∥∥2
6= 0

}
.

In other words, we assume that the projection of P ?(`) on Span
{
P (1), . . . , P (r)

}
is spread

out on the subspaces Span
s∈Ω`1

{
P (s)

}
, Span
s∈Ω`2

{
P (s)

}
, and Span

s∈Ω`3

{
P (s)

}
.

For every k = 1, 2, 3, we impose Ω`
k ∩ Ω`′

k = ∅, ∀` 6= `′. In other words, a given “s”
can not tag different “`”.

Besides, ∀` ∈ Ω?
1, we will impose the corresponding set Ω`

1 to be non empty: each “`”
associated to a large singular value of X? is tagged by at least one “s” associated to large
singular values of X. This implies that #Ω?

1 ≤ #Ω1, where # denotes the cardinality.
Note that this condition is not required for the other sets associated to `: Ω`

2 and Ω`
3

may be empty or not. In that sense, each ` ∈ Ω?
1 can also be tagged by some “s” that

belong to Ω2 or Ω3.
Moreover, for a general `, with 1 ≤ ` ≤ r?, we assume that within each subspace

Span
s∈Ω`k

{
P (s)

}
, k = 1, 2, 3, the projection is spread out uniformly on each component P (s).

As a consequence, taking into account the fact that
∥∥P ?(`)∥∥2

= 1, we define ξ
(`)
k ∈]0, 1],

k = 1, 2, 3 by:

(C0?) If #Ω`
k 6= 0 ,

∥∥∥P (s)P (s)′P ?(`)
∥∥∥2
∼

ξ
(`)
k

#Ω`
k

∀s ∈ Ω`
k ,
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with
∑

k|Ω`k 6=∅

ξ
(`)
k ≤ 1.

Let us consider a few extra conditions. In what follows, conditions denoted with a
star are specific to this paper, whereas the others were already present in Rabier et al.
(2018):

• (C1?)
n2τ

r?

∑
`∈Ω?1

d?2` → +∞ • (C2)
∑
s∈Ω3

d2
s = o(λ)

• (C3)
∑
s∈Ω3

d4
s = o(λ2) • (C4?)

n2τ

r?
= o(1/λ)

• (C5) #Ω1 = O(1) • (C6) #Ω2 = O(1)

• (C7?)
n2τ

r?

∑
`∈Ω?1

ξ
(`)
2 d?2` = o(1) • (C8?)

n2τ

r?

∑
`∈Ω?1

ξ
(`)
3 d?2` = o(1).

Because of conditions (C5) and (C6), since p > n, the rank r of the matrix X, which is
bounded by n, will diverge to +∞ if and only if the number of elements of Ω3 diverges.
On the other hand, since the number m of QTLs is bounded, the rank r? of the matrix
X? is bounded and Ω?

1, Ω?
2 and Ω?

3 are finite sets. Some intuition and some explanations
on these conditions are given in Section 4 of the Supplementary Material.

The following Lemma 2 assumes imperfect LD and that the signal is spread out
uniformly on each subspace of Rrows(X

?). This lemma is not exactly a generalization
to imperfect LD of Lemma 2 of Rabier et al. (2018), which was restricted to perfect
LD. Indeed, in that article, the signal was spread out uniformly on the subspaces of
Rrows(X).

Lemma 2 (Convergence to the oracle accuracy). Let us consider same assumptions as
in Theorem 2 and suppose that for every k = 1, 2, 3, we have Ω`

k ∩ Ω`′

k = ∅, ∀` 6= `′.
Besides, let us suppose that the projected signal is spread out uniformly on each subspace
Span

{
Q?(`)

}
, i.e. ∥∥∥Q?(`)Q?(`)′β?∥∥∥2

∼ n2τ

r?
, ` = 1, . . . , r?. (11)

Moreover, ∀` ∈ Ω?
1, let us assume that Ω`

1 6= ∅ and that ξ
(`)
1 = ξ(n) with 0 < b < ξ(n) ≤ 1.

Then, assuming conditions (C0? − C1? − C2− C3− C4? − C5− C6− C7? − C8?):

• for large n, we have ρ̂g ∼
√
ξ(n) ρoracleg

• if ∀` ∈ Ω?
1, ξ

(`)
2 = 1/nθ1 and ξ

(`)
3 = 1/nθ2 with θ1 > ψ and θ2 > ψ, then we have

ρ̂g −→ ρoracleg .

The proof is given in Section 5 of the Supplementary Material (see also Section 4 for
some intuition).



Remark: For each ` ∈ Ω?
1, ξ(n) is the percentage of the L2 norm of P ?(`) represented on

Span
s∈Ω`1

{
P (s)

}
. Note that under our conditions, we are only able to capture this percentage

of the L2 norm of P ?(`) (see Sections 4 and 5 of the Supplementary Material). 1− ξ(n)
can be viewed as a loss coefficient: it is the percentage of the L2 norm of P ?(`) that is un-
able to be captured (either from Span

s∈Ω`2

{
P (s)

}
, either Span

s∈Ω`3

{
P (s)

}
or the complementary

subspace). Moreover, since p→ +∞ when n→ +∞, the distance between markers and
QTLs tends to zero. As a consequence, QTLs locations match certain marker locations
(i.e. perfect LD), and each column of X? is included in X. Then, according to Lemma

2, the oracle accuracy is reached as soon as lim
√
ξ(n) is equal to one when n → +∞

(i.e. no loss). Typically, this is the case when we set ξ
(`)
2 = 1/nθ1 and ξ

(`)
3 = 1/nθ2 .

3.1.2. The projected signal belongs only to one component
Let us come back to the assumptions given at the beginning of Section 3.1 (before
paragraph 3.1.1). In this context, we propose to study in Section 6 of Supplementary
Material the asymptotic behavior of our estimate ρ̂g when the projected signal belongs

only to one component (either Span
{
Q?(1)

}
or Span

{
Q?(r

?)
}

).

4. How to improve the quality of the prediction

As before, we are interested in predicting the phenotype Ynew of a so-called test (TST)
individual (denoted new), whose genome information is denoted xnew. As in Rabier
et al. (2018), we propose to project the vector Y on a well chosen subspace of the
space spanned by the columns of X, in order to improve the quality of the prediction.
Let 1 ≤ r̃ ≤ r and σ(.) a one-to-one map σ : {1, . . . , r̃} → {1, . . . , r}. We thus have
σ(k) 6= σ(k′) for k 6= k′. Let us consider the estimator

β̃ := X ′V −1P̃ P̃ ′Y where P̃ =
(
P σ(1), . . . , P σ(r̃)

)
.

Note that P̃ P̃ ′Y is the projection of Y on Span
{
P σ(1), . . . , P σ(r̃)

}
. Besides, we set Q̃ :=(

Qσ(1), . . . , Qσ(r̃)
)
. Then, the corresponding prediction for the so-called new individual

is the following:

Ỹnew = x′newβ̃ = x′newX
′V −1P̃ P̃ ′Y .

Let ρ̃g be the analogue of ρg, with Ŷnew replaced by Ỹnew (cf. formula (3)):

ρ̃g :=
Cov

(
Ỹnew, x

′
newβ

)
√

Var
(
Ỹnew

)
Var (x′newβ)

. (12)

A more explicit formula for ρ̃g is given in Lemma 8.1 of Section 8 of the Supplementary
Material. This lemma can be viewed as a version of Theorem 1 based on this new
estimator. Let us now present a result which is the analogue of Theorem 2.



Prediction in high dimensional linear models 13

Lemma 3. Let us consider same hypotheses as in Theorem 2. Then, an estimation of
the quantity ρ̃g is

ˆ̃ρg =
ˆ̃A1(

ˆ̃A2 + ˆ̃A3

)1/2 ( ˆ̃A4

)1/2
,

where

ˆ̃A1 :=
1

n

r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

∥∥∥P (σ(s))P (σ(s))′X?β?
∥∥∥2

, ˆ̃A2 :=
σ2
e

n

r̃∑
s=1

d4
σ(s)

(d2
σ(s) + λ)2

,

ˆ̃A3 :=
1

n

r̃∑
s=1

d4
σ(s)

(d2
σ(s) + λ)2

∥∥∥P (σ(s))P (σ(s))′X?β?
∥∥∥2

, ˆ̃A4 := Â4.

The proof is given in Section 9 of the Supplementary Material.

Let us now give bounds for the quantity ˆ̃ρg.

Lemma 4 (Bounds on ˆ̃ρg). Using same assumptions as in Theorem 2, we always have∥∥∥P̃ P̃ ′X?β?
∥∥∥2

min1≤s≤r̃
d2σ(s)

d2σ(s)+λ√
σ2
e r̃ +

∥∥∥P̃ P̃ ′X?β?
∥∥∥2

max1≤s≤r̃
d4σ(s)

(d2σ(s)+λ)2

√
‖Q?Q?′β?‖2 max` d

?2
`

≤ ˆ̃ρg ≤ ρoracle
g .

The proof relies heavily on the proof of Lemma 1, using the expressions of ˆ̃A1, ˆ̃A2

and ˆ̃A3 given in Lemma 3. We can notice that at the denominator, the quantities r̃ and∥∥∥P̃ P̃ ′X?β?
∥∥∥2

replace now the quantities r and ‖PP ′X?β?‖2 of Lemma 1. This decrease

at the denominator will be profitable provided that the numerator does not decrease too
much.

The following Lemma 5 for imperfect LD is a straightforward analogue of Lemma 6
of Rabier et al. (2018) and allows to compare the quantities ˆ̃ρg and ρ̂g for fixed n.

Lemma 5. Let us suppose that Â1 − ˆ̃A1 6= 0. Then, we have ˆ̃ρg ≥ ρ̂g if and only if the
following relation holds:

ˆ̃A1

Â1 − ˆ̃A1

≥ ( ˆ̃A2 + ˆ̃A3)

Â2 + Â3 − ( ˆ̃A2 + ˆ̃A3)

1 +

√√√√Â2 + Â3

ˆ̃A2 + ˆ̃A3

 .

Let us briefly recall the explanation given in Rabier et al. (2018). We have the

decomposition β̂ = β̃ + ~β, with ~β := X ′V −1 ~P ~P ′Y where ~P denotes the matrix obtained
from P by removing the column vectors P σ(1), . . . , P σ(r̃). Similarly, we have Ŷnew =
Ỹnew + ~Ynew, where ~Ynew := x′new

~β denotes the prediction.



Then, the different terms of the statement can be rewritten:

ˆ̃A1 = Ĉov(Ỹnew, Ynew) , Â1 − ˆ̃A1 = Ĉov(~Ynew, Ynew) ,

ˆ̃A2 + ˆ̃A3 = V̂ar(Ỹnew) , Â2 + Â3 = V̂ar(Ŷnew) ,

Â2 + Â3 − ( ˆ̃A2 + ˆ̃A3) = V̂ar(~Ynew).

Last, in the same way as what has been done before, we tackle in Section 10 of Supple-
mentary Material, a few extreme cases: the projected signal belongs either to Span

{
Q?(1)

}
or Span

{
Q?(r

?)
}

.

5. Applications under imperfect LD

In this section we propose to illustrate our theoretical results, with the help of simulated
data. We refer to Rabier et al. (2018) and Rabier et al. (2016) for a more precise
description of the simulation framework. Populations were simulated by random mating
between haploid individuals (i.e. with only one copy of each chromosome), during (a)
50, (b) 70 generations, or (c) 100 generations. In generation zero, eight haploid founder
lines were crossed. The eight founder setup was supposed to introduce less LD due to
relatedness. We focused on one chromosome of length 1 Morgan and also on a genome
of length 4 Morgan or 6 Morgan. Recall that by definition, there are, on average x
crossovers on a genetic map of length x Morgan. We considered 3 different densities of
genetic markers equally spaced on the chromosome: (a) 500, (b) 1,000, or (c) 2,000 SNPs.
We studied different configurations for the phenotypic model and the environmental
variance σ2

e was set to 1.
The prediction model was learnt using 500 TRN individuals and the prediction model

was evaluated on 100 TST (in all cases) produced in the last generation. Note also that
all the quantities presented in the different tables are averages based on 100 simulations.
Since we analyze the case where X and X? do not vary across replicates, one simulation
consists (a) in regenerating 100 TST individuals by random mating between individuals
from the penultimate generation, and (b) in regenerating new phenotypes (TRN+TST).
The empirical accuracy was computed with the R software, using the empirical corre-
lation between the predicted values and the true values. The regularization parameter
λ was chosen by Restricted Maximum Likelihood (Corbeil and Searle (1976)) using the
matrix X.

In what follows, in order to make the reading easier, we will adopt the notation
ρ̂ph(X?, β?) and ρ̌ph(X?, X?

new, β
?) for ρ̂ph and ρ̌ph respectively. This will help for enu-

merating the nuisance parameters that have to be estimated.

5.1. TRN and TST do not share the same genetic map (Tables 1, 2, 3)
We propose here to study a new topic in GS: the accuracy of the prediction when the
genetic map of TRN differs from the one of TST. In this context, let us consider a more
dense map for TRN than for TST. Since the estimation ρ̂ph(X?, β?) depends on nuisance
parameters X? and β?, we propose to estimate these parameters using the dense TRN
map. This concept relies on the expectation that QTLs will be in perfect LD with
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Table 1. Comparison among different estimators of the phenotypic accuracy, when the causal
SNPs (i.e. the QTLs) are not observed in the TST samples (n = 500, nnew = 100, σ2

e = 1,
8 founders). The nuisance parameters are estimated thanks to a TRN map containing 500
markers equally spaced on the chromosome [0,T]. In contrast, the TST map contains only 250
markers equally spaced on [0,T]. For both maps, the first marker is located respectively at
0.002M, 0.008M, and 0.012M, when T=1, T=4, and T=6. 25 QTLs with effects 0.45 are located
respectively every 0.04M, 0.16M, and 0.24M when T=1, T=4, and T=6. Emp. Acc. refers to
the empirical phenotypic accuracy, whereas ρ̂pLD

ph and ρ̌pLD
ph refer to complete LD proxies from

Rabier et al. (2018). The Mean Squared Errors (MSE) with respect to the Empirical Accuracy
are given in brackets, and their average over the 3 numbers of generations is denoted MSE.
For each chromosome length T, the proxy with the smallest MSE is highlighted in gray.

T Method 50 generations 70 generations 100 generations MSE

1

Emp. Acc. 0.2925 0.2976 0.3224
ρ̌ph(X?, X?

new, β
?) 0.2833 (0.0070) 0.3099 (0.0078) 0.3221 (0.0068) 0.0072

ρ̂ph(X̂?, β̂?
LASSO) 0.1241 (0.0397) 0.1312 (0.0380) 0.1767 (0.0336) 0.0371

ρ̂ph(X̂?, β̂?
GPLASSO) 0.08366 (0.0561) 0.0998 (0.0501) 0.1393 (0.0464) 0.0509

ρ̂ph(X̂?, β̂?
ADLASSO) 0.2947 (0.0108) 0.3129 (0.0107) 0.3521 (0.0110) 0.0108

ρ̌pLD
ph (β̂ADLASSO) 0.1762 (0.0324) 0.2179 (0.0238) 0.2708 (0.0159) 0.0240

ρ̂pLD
ph (β̂ADLASSO) 0.1955 (0.0302) 0.2361 (0.0222) 0.3086 (0.0149) 0.0224

4

Emp. Acc. 0.3021 0.2671 0.2043
ρ̌ph(X?, X?

new, β
?) 0.3021 (0.0057) 0.2670 (0.0067) 0.2088 (0.0056) 0.0060

ρ̂ph(X̂?, β̂?
LASSO) 0.2848 (0.0102) 0.3042 (0.0111) 0.2591 (0.0114) 0.0109

ρ̂ph(X̂?, β̂?
GPLASSO) 0.2549 (0.0133) 0.2677 (0.0108) 0.2370 (0.0107) 0.0116

ρ̂ph(X̂?, β̂?
ADLASSO) 0.4029 (0.0199) 0.4197 (0.0316) 0.3708 (0.0362) 0.0292

ρ̌pLD
ph (β̂ADLASSO) 0.1669 (0.0438) 0.1240 (0.0457) 0.0283 (0.0416) 0.0437

ρ̂pLD
ph (β̂ADLASSO) 0.1878 (0.0416) 0.1446 (0.0453) 0.0312 (0.0413) 0.0427

6

Emp. Acc. 0.2284 0.2441 0.2331
ρ̌ph(X?, X?

new, β
?) 0.2212 (0.0064) 0.2433 (0.0067) 0.2327 (0.0075) 0.0069

ρ̂ph(X̂?, β̂?
LASSO) 0.2832 (0.0141) 0.2870 (0.012) 0.2529 (0.0118) 0.0126

ρ̂ph(X̂?, β̂?
GPLASSO) 0.2624 (0.0127) 0.2600 (0.0126) 0.2336 (0.0121) 0.0125

ρ̂ph(X̂?, β̂?
ADLASSO) 0.3907 (0.0366) 0.4109 (0.0379) 0.3836 (0.0339) 0.0361

ρ̌pLD
ph (β̂ADLASSO) 0.0742 (0.0387) 0.0817 (0.0483) 0.0841 (0.0449) 0.0439

ρ̂pLD
ph (β̂ADLASSO) 0.0848 (0.0374) 0.0931 (0.0477) 0.0991 (0.0449) 0.0433



Table 2. Same as Table 1 except that more markers are considered. The nuisance parameters
are estimated thanks to a TRN map containing 1000 markers on [0,T]. The TST map contains
only 500 markers on [0,T]. For both maps, the first marker is located respectively at 0.001M,
0.004M, and 0.006M, when T=1, T=4, and T=6. QTL locations are the same as in Table 1.

T Method 50 generations 70 generations 100 generations MSE

1

Emp. Acc. 0.5287 0.5396 0.5173
ρ̌ph(X?, X?

new, β
?) 0.5152 (0.0043) 0.5412 (0.0043) 0.5176 (0.0029) 0.0038

ρ̂ph(X̂?, β̂?
LASSO) 0.4370 (0.0175) 0.4638 (0.0013) 0.4642 (0.0092) 0.0093

ρ̂ph(X̂?, β̂?
GPLASSO) 0.4033 (0.0239) 0.4469 (0.0163) 0.4471 (0.0115) 0.0172

ρ̂ph(X̂?, β̂?
ADLASSO) 0.5371 (0.0073) 0.5691 (0.0063) 0.5589 (0.0069) 0.0068

ρ̌pLD
ph (β̂ADLASSO) 0.5011 (0.0098) 0.5324 (0.0079) 0.5172 (0.0049) 0.0075

ρ̂pLD
ph (β̂ADLASSO) 0.5411 (0.0099) 0.5758 (0.0094) 0.5690 (0.0087) 0.0093

Emp. Acc. 0.3909 0.3772 0.3217

4

ρ̌ph(X?, X?
new, β

?) 0.3795 (0.0055) 0.3759 (0.0075) 0.3266 (0.0064) 0.0065

ρ̂ph(X̂?, β̂?
LASSO) 0.3397 (0.0112) 0.3436 (0.0132) 0.2629 (0.0146) 0.0130

ρ̂ph(X̂?, β̂?
GPLASSO) 0.2413 (0.0334) 0.3059 (0.0179) 0.2178 (0.0228) 0.0247

ρ̂ph(X̂?, β̂?
ADLASSO) 0.4677 (0.01293) 0.4821 (0.0222) 0.4093 (0.0164) 0.0172

ρ̌pLD
ph (β̂ADLASSO) 0.2599 (0.0389) 0.2647 (0.0355) 0.0846 (0.0722) 0.0489

ρ̂pLD
ph (β̂ADLASSO) 0.2970 (0.0336) 0.3182 (0.0306) 0.0986 (0.0693) 0.0445

Emp. Acc. 0.3749 0.3319 0.3155

6

ρ̌ph(X?, X?
new, β

?) 0.3751 (0.0052) 0.3339 (0.0054) 0.3206 (0.0045) 0.0050

ρ̂ph(X̂?, β̂?
LASSO) 0.37 (0.0034) 0.3548 (0.0094) 0.3415 (0.0093) 0.0074

ρ̂ph(X̂?, β̂?
GPLASSO) 0.3395 (0.01132) 0.3259 (0.0093) 0.3048 (0.0094) 0.0100

ρ̂ph(X̂?, β̂?
ADLASSO) 0.5045 (0.02488) 0.4981 (0.0355) 0.4703 (0.0317) 0.0307

ρ̌pLD
ph (β̂ADLASSO) 0.2351 (0.0436) 0.2383 (0.0358) 0.2423 (0.0307) 0.0367

ρ̂pLD
ph (β̂ADLASSO) 0.1929 (0.0519) 0.1906 (0.0397) 0.2045 (0.0319) 0.0412
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Table 3. Same as Table 1 except that more markers are considered. The nuisance parameters
are estimated thanks to a TRN map containing 2000 markers on [0,T]. The TST map contains
only 1000 markers on [0,T]. For both maps, the first marker is located respectively at 0.0005M,
0.002M, and 0.003M, when T=1, T=4, and T=6. QTL locations are the same as in Table 1.

T Method 50 generations 70 generations 100 generations MSE

1

Emp. Acc. 0.5239 0.5561 0.5907
ρ̌ph(X?, X?

new, β
?) 0.5224 (0.0036) 0.5441 (0.0030) 0.5853 (0.0033) 0.0033

ρ̂ph(X̂?, β̂?
LASSO) 0.4218 (0.0181) 0.4213 (0.0224) 0.4676 (0.0220) 0.0208

ρ̂ph(X̂?, β̂?
GPLASSO) 0.3856 (0.0269) 0.3949 (0.0309) 0.4546 (0.0247) 0.0275

ρ̂ph(X̂?, β̂?
ADLASSO) 0.5261 (0.0061) 0.5298 (0.0043) 0.5709 (0.0057) 0.0054

ρ̌pLD
ph (β̂ADLASSO) 0.4624 (0.0096) 0.4734 (0.0114) 0.5241 (0.0092) 0.0101

ρ̂pLD
ph (β̂ADLASSO) 0.5107 (0.0068) 0.5153 (0.0062) 0.5641 (0.0065) 0.0065

4

Emp. Acc. 0.4244 0.4027 0.4162
ρ̌ph(X?, X?

new, β
?) 0.4315 (0.0046) 0.3935 (0.0055) 0.4093 (0.0053) 0.0051

ρ̂ph(X̂?, β̂?
LASSO) 0.3614 (0.013) 0.3224 (0.0193) 0.3478 (0.0156) 0.0159

ρ̂ph(X̂?, β̂?
GPLASSO) 0.2974 (0.0260) 0.2521 (0.0403) 0.2929 (0.0256) 0.0306

ρ̂ph(X̂?, β̂?
ADLASSO) 0.5063 (0.0147) 0.4642 (0.0146) 0.5001 (0.0152) 0.0148

ρ̌pLD
ph (β̂ADLASSO) 0.3037 (0.0291) 0.2441 (0.0414) 0.2906 (0.0328) 0.0344

ρ̂pLD
ph (β̂ADLASSO) 0.3612 (0.0226) 0.3205 (0.0305) 0.3483 (0.0259) 0.0263

6

Emp. Acc. 0.3724 0.4037 0.3477
ρ̌ph(X?, X?

new, β
?) 0.3814 (0.0052) 0.3959 (0.0041) 0.3435 (0.0057) 0.0050

ρ̂ph(X̂?, β̂?
LASSO) 0.3215 (0.0127) 0.3325 (0.0135) 0.2709 (0.0167) 0.0143

ρ̂ph(X̂?, β̂?
GPLASSO) 0.2619 (0.0236) 0.2799 (0.0240) 0.2071 (0.0299) 0.0258

ρ̂ph(X̂?, β̂?
ADLASSO) 0.4863 (0.0212) 0.4966 (0.0144) 0.4401 (0.0167) 0.0174

ρ̌pLD
ph (β̂ADLASSO) 0.2024 (0.0478) 0.2309 (0.0499) 0.1844 (0.0413) 0.0463

ρ̂pLD
ph (β̂ADLASSO) 0.2510 (0.0399) 0.2935 (0.0397) 0.2347 (0.0324) 0.0373

markers under this dense TRN map, which is not the case for the TST map (imperfect
LD).

The key point is that the dense TRN map is only used to estimate the nuisance
parameters. The predictor for the so-called new individual is still Ŷnew = x′newβ̂ =
x′newX

′V −1Y , where X denotes the design matrix (of size n×p) for TRN (the columns of
X match exactly marker locations of TST). In the same way, the estimation ρ̂ph(X?, β?),
built on Theorem 2, relies on the design matrix X. In this context, using the same
number of generations for TRN and TST, boths samples (TRN and TST) share the same

probability distribution, and it is reasonable to consider the estimation ρ̂ph(X̂?, β̂?) as a
proxy for the predictive ability. In order to estimate β? in a high-dimensional setting, we
will concentrate on the LASSO (Tibshirani (1996)), the Adaptive LASSO (Zou (2006))
and on the Group LASSO (Yuan and Lin (2006)) estimators, as in Rabier et al. (2018).
Tables 1, 2 and 3 compare the performances of our new proxies, that handle imperfect
LD, with proxies suggested in Rabier et al. (2018) under perfect LD assumptions (using

the Adaptive LASSO as a substitute for β). In what follows, ρ̂pLDph (β̂ADLASSO) (resp.

ρ̌pLDph (β̂ADLASSO)) will refer to the “perfect LD” proxies available before (resp. after)
genotyping TST individuals.

Tables 1, 2 and 3 deal respectively with 250 markers, 500 markers and 1000 markers,
equally spaced on a chromosome of length T. The dense TRN map contains twice the



Table 4. Illustration of the predictions based on β̃. Ĉor
(
Ŷnew, Ynew

)
refers to the empirical corre-

lation between Ŷnew and Ynew. Ĉor
(
Ỹ ADLASSO
new , Ynew

)
(resp. Ĉor

(
Ỹ LASSO
new , Ynew

)
) refers to the

empirical correlation between Ỹnew and Ynew, with the help of the Adaptive Lasso (resp. Lasso)
for the choice of the subspace. The chromosome is of length T and 2 QTLs located at 3cM and
80cM with effects +2 and −4 respectively (n = 500, nnew = 100, σ2

e = 4, 8 founders). For TRN,
p markers are equally spaced on the chromosome on [0,T], whereas for TST p/(2T) markers are
equally spaced on [0,1], and the same map (as TRN) is kept on [1,T]. The QTLs were observed
only in the TRN sample (i.e. not observed in the TST sample).

(T, p) Generations Ĉor
(
Ŷnew, Ynew

)
Ĉor

(
Ỹ LASSO
new , Ynew

)
Ĉor

(
Ỹ ADLASSO
new , Ynew

)
(4, 4000)

50 0.4537 0.4625 0.4668
100 0.4051 0.4059 0.4126

(6, 6000)
50 0.3171 0.3174 0.3246
100 0.3468 0.3536 0.3527

(4, 8000)
50 0.2975 0.2985 0.3094
100 0.2642 0.2726 0.2741

(6, 12000)
50 0.3510 0.3578 0.3604
100 0.3563 0.3604 0.3655

number of markers. According to Tables 1, 2 and 3, there is a clear advantage to
handle explicitly imperfect LD for T=4 and T=6, whatever the density of markers: the
proxies ρ̂ph(X̂?, β̂?ADLASSO) and ρ̂ph(X̂?, β̂?LASSO) gave always better performances than

the quantities ρ̂pLDph (β̂ADLASSO) and ρ̌pLDph (β̂ADLASSO) relying on perfect LD.

In contrast, when a chrosomome of length 1M was studied, ρ̂ph(X̂?, β̂?ADLASSO) was
the only proxy found to be more accurate than “perfect LD” proxies. Indeed, when p
was set to 500 or 1000, ρ̂ph(X̂?, β̂?LASSO) was outperformed by “perfect LD” proxies.
This result is not so surprising, since this genetic map is close to mimick perfect LD
situation, and the Adaptive Lasso was the best substitute for β according to Rabier et
al. (2018). Same conclusions hold for the 100 QTLs scenario (cf. Tables 1 and 2 in
Supplementary material).

To sum up, the best proxy (the one highlighted in gray in each table) for each

simulation setup, was found to be ρ̂ph(X̂?, β̂?ADLASSO) for T=1, and in most cases,

ρ̂ph(X̂?, β̂?LASSO) for T=4 and T=6.

5.2. The quality of the prediction can be improved (Tables 4 and 5)
We propose to illustrate here the performances of the estimator β̃ that relies on the
projection of Y on a well chosen subspace of Rrows(X). In order to find an appro-
priate subspace, we used the same kind of procedure as in Rabier et al. (2018). We

choose σ(.) such as
d2σ(k)

d2σ(k)+λ

∥∥P (σ(k))P (σ(k))′X?β?
∥∥2

is the k-th largest term of the sequence

d2s
d2s+λ

∥∥P (s)P (s)′X?β?
∥∥2

s=1,...,r
. The value of r̃ was chosen as the largest value satisfying

the condition ˆ̃A1/Â1 ≤ υ, where υ denotes a tuning parameter. The corresponding accu-
racy was then computed for a given value of υ. In order to choose the tuning parameter
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Table 5. Comparisons among predictions based on β̂ and β̃ when the vector β? belongs to Rrows(X?).
Ĉor

(
Ŷnew, Ynew

)
refers to the empirical correlation between Ŷnew and Ynew. Ĉor

(
Ỹ ADLASSO
new , Ynew

)
(resp. Ĉor

(
Ỹ LASSO
new , Ynew

)
) refers to the empirical correlation between Ỹnew and Ynew, with the help

of the Adaptive Lasso (resp. Lasso) for the choice of the subspace. The chromosome is of length T
(n = 500, nnew = 100, σ2

e = 1, 8 founders). For TRN, p markers are equally spaced on the chromosome
on [0,T], whereas for TST p/(2T) markers are equally spaced on [0,1], and the same map (as TRN) is
kept on [1,T]. QTLs are located at marker locations of the TRN map on [0,1]. The vector β? is such that
β? = ωQ?(1) + ωQ?(2) + ωQ?(3).

(T, p) Generations ω Ĉor
(
Ŷnew, Ynew

)
Ĉor

(
Ỹ LASSO
new , Ynew

)
Ĉor

(
Ỹ ADLASSO
new , Ynew

)
(4, 8000)

50 0.3 0.5660 0.5791 0.5845
100 0.3 0.5561 0.5644 0.5691

(6, 12000)
50 0.3 0.4769 0.4815 0.4824
100 0.3 0.4649 0.4834 0.4834

(4, 8000)
50 0.6 0.7978 0.8115 0.8078
100 0.6 0.7912 0.8067 0.8019

(6, 12000)
50 0.6 0.7244 0.7371 0.7273
100 0.6 0.7127 0.7324 0.7247

υ, we performed an optimization over the grid {0.7, 0.8, 0.9, 0.925, 0.95, 0.975, 0.99} and
kept the value giving the highest accuracy.

During this procedure, β? was estimated with the help of a penalized likelihood

method. Table 4 compares the empirical correlations Ĉor
(
Ỹnew, Ynew

)
when subspaces

were chosen according to the Adaptive LASSO or according to the LASSO. The table
reports also the empirical accuracy, relying on the classical Ridge estimator.

In all the cases studied in Table 4, the empirical accuracy associated to the new
estimator β̃ was always slightly greater than the classical empirical accuracy based on
the Ridge estimator. Moreover, for the choice of the r̃ subspaces, we could not establish
the superiority of one penalized likelihood method over another.

Last, Table 4 investigates the case where the vector β? belongs to Rrows(X
?). As

expected, we observe a significant increase in terms of accuracy when the “modified
predictor” is adopted.

5.3. Real data: GS in rice
We propose to illustrate our theoretical results on real data of Spindel et al. (2015),
regarding GS in rice. An important research topic in GS is to determine the number of
markers required for implementing GS. We focused on the rice flowering time (days to
50% flowering) collected in Los Banos, Philippines, during the dry season 2012.

Among the observations, 80% were chosen for the TRN set, and the remaining 20%
were affected to the TST set. According to the data, the number of TRN individuals
was 252, whereas the number of TEST individuals was 63.

We considered 4 subset sizes (448, 781, 1553 and 3076) chosen by the authors from
their 73147 SNPs. For each subset size, we considered exactly the 10 random sets pro-
vided by the authors. Recall that these random sets contain SNPs located at random



position along the rice genome. For each subset size, Table 6 reports the average perfor-
mance of different GS proxies over the 10 random sets. In contrast, Tables 7 and 8 are
dedicated to the configuration with 448 SNPs and 781 SNPs respectively, and provide
results regarding each random set. Note that Tables 3 and 4 that handle 1553 and 3076
SNPs respectively, are included in Supplementary Material.

According to Table 6, ρ̂ph(X̂?, β̂?LASSO) was the most interesting proxy (combining
all SNPs scenarios). In particular, a small density of markers deteriorated “perfect LD”
proxies: the phenotypic accuracy was underestimated when p = 448 or p = 781. For
instance, for p = 448, ρ̂pLDph (β̂ADLASSO) and ρ̌pLDph (β̂ADLASSO) were equal on average to

0.3168 and 0.3662 respectively, instead of 0.4789 (see also results from sets 3, 6, 8 and

10 in Table 7). In contrast, the “imperfect LD” proxy ρ̂ph(X̂?, β̂?LASSO) was satisfactory
for all densities of markers. This proxy did not suffer from the lack of markers, since the
nuisance parameters were learned using a TRN map based on 73147 SNPs. Moreover,
as observed before (cf. our simulation study, section 5.1), for such large genome size
(T = 13.101M in rice), it seems that we should choose the LASSO and not the Adaptive
LASSO as a substitute for β? when computing our “imperfect LD” proxies. Last, as
expected, the more markers there are, the more similar the behavior of perfect and
“imperfect LD” proxies is.

Supplementary Material: The online version of this article offers Supplementary
Material that gives the mathematical proofs of the results of the main manuscript.

6. Conclusion

GS consists in selecting individuals by means of predictions relying on the genome. Many
studies on GS show that it becomes useless to consider too many markers, for having a
fair prediction. Moreover, for some species, the number of markers remains too small to
cover the huge genome size. In this context, we introduced an “imperfect LD” proxy,
ρ̂ph(X̂?, β̂?LASSO), that should help geneticists to find the minimal number of makers
required for an accurate prediction. Our proxy does not require the genome information
of TST individuals. The accuracy of future predictions based only on a few markers,
can be evaluated according to our reliable proxy, as soon as a large number of markers
is available for the TRN map. If this accuracy is found to be too low, geneticists should
reconsider the density of markers used for their TST map.
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Table 6. Comparison among different estimators of the phenotypic accuracy on rice data from Spindel et al.
(2015). The trait considered is the flowering time during the dry season 2012. Different densities of markers
for the TST samples are studied, and the nuisance parameters are estimated thanks to a TRN map containing
73147 markers. Each computed accuracy relies on 1000 data sets: sets 1 to 10 of Spindel et al. (2015) are
studied, and 100 draws are considered for each set (with random individuals in TRN and TST sets, n = 252,
nnew = 63). The Mean Squared Error (MSE) with respect to the Empirical Accuracy is given in brackets. For
each density of markers, the proxy with the tiniest MSE is highlighted in gray. MSE refers to the average over
the 4 densities of markers.

Method 448 SNPs 781 SNPs 1553 SNPs 3076 SNPs MSE
Emp. Acc. 0.4789 0.4919 0.5275 0.5242

ρ̂ph(X̂?, β̂?
ADLASSO) 0.4269 (0.0355) 0.4379 (0.0376) 0.4520 (0.0419) 0.4461 (0.0430) 0.0395

ρ̂ph(X̂?, β̂?
LASSO) 0.4621 (0.0244) 0.4653 (0.0226) 0.4737 (0.0254) 0.4728 (0.0263) 0.0247

ρ̌pLD
ph (β̂ADLASSO) 0.3168 (0.0529) 0.3571 (0.0364) 0.4233 (0.0264) 0.4115 (0.0290) 0.0362

ρ̂pLD
ph (β̂ADLASSO) 0.3662 (0.0454) 0.4202 (0.0281) 0.4919 (0.0215) 0.4952 (0.0342) 0.0323

Table 7. Same as Table 6 except that only 448 SNPs are used for the TST sample. Moreover, the
results according to each set Spindel et al. (2015) are fully described here. The nuisance parameters
are still estimated thanks to a TRN map containing 73147 markers. Each computed accuracy relies on
100 data sets: for each set of Spindel et al. (2015), 100 draws are considered (with random individuals
in TRN and TST sets, n = 252, nnew = 63).

Dataset ID Set 1 Set 2 Set 3 Set 4
Emp. Acc. 0.5993 0.5445 0.4117 0.5054

ρ̂ph(X̂?, β̂?
ADLASSO) 0.4764 (0.0429) 0.4441 (0.0441) 0.4053 (0.0322) 0.4358 (0.0356)

ρ̂ph(X̂?, β̂?
LASSO) 0.5125 (0.0271) 0.4847 (0.02486) 0.4380 (0.0236) 0.4808 (0.0207)

ρ̌pLD
ph (β̂ADLASSO) 0.5065 (0.0171) 0.4712 (0.0154) 0.1580 (0.0959) 0.4222 (0.0176)

ρ̂pLD
ph (β̂ADLASSO) 0.5404 (0.0124) 0.5128 (0.0128) 0.2059 (0.0867) 0.4663 (0.0153)

Dataset ID Set 5 Set 6 Set 7 Set 8
Emp. Acc. 0.4676 0.4081 0.4878 0.4455

ρ̂ph(X̂?, β̂?
ADLASSO) 0.4309 (0.0353) 0.4070 (0.0348) 0.4362 (0.0373) 0.4214 (0.0348)

ρ̂ph(X̂?, β̂?
LASSO) 0.4653 (0.0233) 0.4207 (0.0232) 0.4676 (0.0227) 0.4508 (0.0244)

ρ̌pLD
ph (β̂ADLASSO) 0.3251 (0.0398) 0.1774 (0.0907) 0.3732 (0.0286) 0.2726 (0.0668)

ρ̂pLD
ph (β̂ADLASSO) 0.3953 (0.0298) 0.2179 (0.0823) 0.4343 (0.0211) 0.3274 (0.0586)

Dataset ID Set 9 Set 10
Emp. Acc. 0.4427 0.4696

ρ̂ph(X̂?, β̂?
ADLASSO) 0.4117 (0.0218) 0.4130 (0.0366)

ρ̂ph(X̂?, β̂?
LASSO) 0.4622 (0.0316) 0.4382 (0.0229)

ρ̌pLD
ph (β̂ADLASSO) 0.2789 (0.0404) 0.1829 (0.1179)

ρ̂pLD
ph (β̂ADLASSO) 0.3255 (0.0314) 0.2366 (0.1036)



Table 8. Same as Table 7, except that 781 SNPs are used for the TST sample.
Dataset ID Set 1 Set 2 Set 3 Set 4
Emp. Acc. 0.4289 0.4709 0.4753 0.5638

ρ̂ph(X̂?, β̂?
ADLASSO) 0.4398 (0.0318) 0.4289 (0.0334) 0.4285 (0.0383) 0.4462 (0.0463)

ρ̂ph(X̂?, β̂?
LASSO) 0.4360 (0.0226) 0.4537 (0.0211) 0.4622 (0.0216) 0.4869 (0.0263)

ρ̌pLD
ph (β̂ADLASSO) 0.2349 (0.05634) 0.2664 (0.0619) 0.3380 (0.0329) 0.5296 (0.0105)

ρ̂pLD
ph (β̂ADLASSO) 0.3008 (0.0415) 0.3378 (0.0441) 0.4027 (0.0221) 0.6032 (0.0126)

Dataset ID Set 5 Set 6 Set 7 Set 8
Emp. Acc. 0.5449 0.5161 0.4121 0.5078

ρ̂ph(X̂?, β̂?
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ph (β̂ADLASSO) 0.4045 (0.0313) 0.3893 (0.0284) 0.1965 (0.0743) 0.4053 (0.0244)

ρ̂pLD
ph (β̂ADLASSO) 0.4691 (0.0201) 0.4502 (0.0192) 0.2298 (0.0684) 0.4629 (0.0187)

Dataset ID Set 9 Set 10
Emp. Acc. 0.4881 0.5119

ρ̂ph(X̂?, β̂?
ADLASSO) 0.4412 (0.0360) 0.4419 (0.0374)

ρ̂ph(X̂?, β̂?
LASSO) 0.4749 (0.0189) 0.4763 (0.0216)

ρ̌pLD
ph (β̂ADLASSO) 0.3574 (0.0278) 0.4493 (0.0158)

ρ̂pLD
ph (β̂ADLASSO) 0.4176 (0.0208) 0.5277 (0.0137)
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1. Proof of Theorem 1 of the main manuscript

By definition,

A1 = β?′ E (x?newx
′
new)X ′V −1X?β?.

We set D = Diag
(

d1
d21+λ

, . . . , dr
d2r+λ

)
. With this notation, we have the relation:

X ′V −1 = QDP ′. (1)

Recall that X? = P ?D?Q?′. After easy calculations, we obtain

X ′V −1P ?D?Q?′β? =

r∑
s=1

ds
d2
s + λ

Q(s)P (s)′
r?∑
j=1

d?jP
?(j)Q?(j)′β?. (2)

Then,

A1 =

r∑
s=1

ds
d2
s + λ

β?′ E (x?newx
′
new) Q(s)P (s)′

r?∑
j=1

d?jP
?(j)Q?(j)′β?.

By definition,

A2 = σ2
eE
(∥∥x′newX ′V −1

∥∥2
)
.

According to Theorem 1 of [2], we also have

A2 = σ2
e

r∑
s=1

d2
s

(d2
s + λ)2

E
(∥∥∥Q(s)Q(s)′xnew

∥∥∥2
)
.

1
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By definition,

A3 = β?′X?′V −1XVar (xnew)X ′V −1X?β?.

According to formula (2), we obtain the desired result

A3 =

 r∑
s=1

ds
d2
s + λ

Q(s)P (s)′
r?∑
j=1

d?jP
?(j)Q?(j)′β?

′ E (xnewx
′
new)

×

 r∑
s=1

ds
d2
s + λ

Q(s)P (s)′
r?∑
j=1

d?jP
?(j)Q?(j)′β?

 .

Last, since A4 = σ2
G, we have the relationship

A4 = β?′E (x?newx
?′
new)β?.

2. Proof of Theorem 2 of the main manuscript

Let us define Â1 in the following way:

Â1 =

r∑
s=1

ds
d2
s + λ

β?′ Σ̂ Q(s)P (s)′
r?∑
j=1

d?jP
?(j)Q?(j)′β?,

where Σ̂ := X?′X/n.
We have the relationship XQ(s) = dsP

(s). As a consequence, after some
straightforward matrix algebra, we obtain

X?′XQ(s) = ds

r?∑
`=1

Q?(`)d?`P
?(`)′P (s).

We deduce

Â1 =
1

n

r∑
s=1

β?′
d2
s

d2
s + λ

r?∑
`=1

Q?(`)d?`P
?(`)′P (s)P (s)′

r?∑
j=1

d?jP
?(j)Q?(j)′β?.

According to Theorem 2 of [2], a natural estimation of A2 is

Â2 =
σ2
e

n

r∑
s=1

d2
s

(d2
s + λ)2

n∑
i=1

∥∥∥Q(s)Q(s)′xi

∥∥∥2

,

and it leads to the following expression

Â2 =
σ2
e

n

r∑
s=1

d4
s

(d2
s + λ)2

.
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Let us consider the following estimation of A3

Â3 =
1

n

 r∑
s=1

ds
d2
s + λ

Q(s)P (s)′
r?∑
j=1

d?jP
?(j)Q?(j)′β?

′ X ′X
×

 r∑
s=1

ds
d2
s + λ

Q(s)P (s)′
r?∑
j=1

d?jP
?(j)Q?(j)′β?

 .

We have

Â3 =
1

n

 r∑
s=1

ds
d2
s + λ

XQ(s)
r?∑
j=1

d?jQ
?(j)′β?P (s)′P ?(j)

′

×

 r∑
s=1

ds
d2
s + λ

XQ(s)
r?∑
j=1

d?jQ
?(j)′β?P (s)′P ?(j)

 .

Note that

XQ(s)Q?(j)′β? = PDQ′Q(s)Q?(j)′β? = dsPesQ
?(j)′β? = dsP

(s)Q?(j)′β?

where es denotes the s-th vector of the canonical basis of Rr. As a consequence,

r∑
s=1

ds
d2
s + λ

XQ(s)
r?∑
j=1

d?jQ
?(j)′β?P (s)′P ?(j) =

r∑
s=1

d2
s

d2
s + λ

P (s)
r?∑
j=1

d?jP
(s)′P ?(j)Q?(j)′β?.

Last, we obtain

Â3 =
1

n

r∑
s=1

d4
s

(d2
s + λ)2

 r?∑
j=1

d?jP
(s)′P ?(j)Q?(j)′β?

2

.

Finally, let us consider the following estimation of A4:

Â4 =
1

n
β?′X?′X?β?.

We have

Â4 =
1

n
β?′Q?D?2Q?′β? =

1

n

r∑
s=1

d?2s β
?′Q?(s)Q?(s)′β?

=
1

n

r∑
s=1

d?2s β
?′Q?(s)Q?(s)′Q?(s)Q?(s)′β? =

1

n

r∑
s=1

d?2s

∥∥∥Q?(s)Q?(s)′β?∥∥∥2

.
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3. Proof of Lemma 1 of the main manuscript

To begin with, we have to notice that

‖PP ′β?‖2 =

r∑
s=1

∥∥∥P (s)P (s)′β?
∥∥∥2

.

Then, using the Cauchy-Schwartz inequality and the fact that X?β? belongs to
Span

(
P ?(1), . . . , P ?(r

?)
)
, we have

Â1 =
1

n

r∑
s=1

d2
s

d2
s + λ

∥∥∥P (s)P (s)′X?β?
∥∥∥2

=
1

n

r∑
s=1

(
d2
s

d2
s + λ

∥∥∥P (s)P (s)′X?β?
∥∥∥)(∥∥∥P (s)P (s)′X?β?

∥∥∥)

≤ 1

n

(
r∑
s=1

d4
s

(d2
s + λ)2

∥∥∥P (s)P (s)′X?β?
∥∥∥2
)1/2( r∑

s=1

∥∥∥P (s)P (s)′X?β?
∥∥∥2
)1/2

=
1

n

(
r∑
s=1

d4
s

(d2
s + λ)2

∥∥∥P (s)P (s)′X?β?
∥∥∥2
)1/2

‖PP ′X?β?‖

≤ 1

n

(
r∑
s=1

d4
s

(d2
s + λ)2

∥∥∥P (s)P (s)′X?β?
∥∥∥2
)1/2

‖P ?P ?′X?β?‖

= Â
1/2
3

(
r?∑
`=1

d?2`

∥∥∥Q?(`)Q?(`)′β?∥∥∥2
)1/2

= Â
1/2
3 Â

1/2
4 .

Besides, since Â2 ≥ 0 and ρoracleg = 1, we obtain

ρ̂g ≤
Â1

Â
1/2
3 Â

1/2
4

≤ ρoracleg .

In order to obtain the lower bound, we just have to notice that

nÂ1 =

r∑
s=1

d2
s

d2
s + λ

∥∥∥P (s)P (s)′X?β?
∥∥∥2

≥ ‖PP ′X?β?‖2 min
s

d2
s

d2
s + λ

,

nÂ3 =

r∑
s=1

d4
s

(d2
s + λ)2

∥∥∥P (s)P (s)′X?β?
∥∥∥2

≤ max
s

d4
s

(d2
s + λ)2

‖PP ′X?β?‖2 ,

nÂ4 =

r?∑
`=1

d?2`

∥∥∥Q?(`)Q?(`)′β?∥∥∥2

≤ ‖Q?Q?′β?‖2 max
`
d?2` .
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Since
d4s

(d2s+λ)2 ≤ 1, we also have nÂ2 = σ2
e

r∑
s=1

d4s
(d2s+λ)2 ≤ σ

2
er. As a consequence,

we have:

‖PP ′X?β?‖2 mins
d2s

d2s+λ√
σ2
e r + ‖PP ′X?β?‖2 maxs

d4s
(d2s+λ)2

√
‖Q?Q?′β?‖2 max` d?2`

≤ ρ̂g.

4. Some intuition on the different conditions and on the proof of
Lemma 2 of the main manuscript

First, we have to highlight the fact that the shrinkage will potentially have an
impact on the singular values ds of X (see e.g. the terms d2

s/(d
2
s + λ) in Â1). In

contrast, the singular values d?` of X? are not directly affected by the shrinkage.
Recall that the shrinkage parameter λ is necessary in order to handle the high
dimensional setting p >> n.

Let us consider a “`” that belongs to Ω?1. The key point is the following.
When “`” is tagged by a “s” that belongs to Ω1, the shrinkage does not have
any impact since λ is negligible compared to ds. As soon as “`” is tagged by a
“s” that belongs to either Ω2 or Ω3, there is a loss due to shrinkage, since λ is
not negligible compared to ds. Condition (C7?) (resp. (C8?)) will ensure that

the projection ξ
(`)
2 (resp. ξ

(`)
3 ) of P ?(`) on Span

s∈Ω`2

{
P (s)

}
(resp. Span

s∈Ω`3

{
P (s)

}
) is

small enough. In that sense, the loss due to the shrinkage will have no impact.

In contrast, the projection ξ
(`)
1 of P ?(`) on Span

s∈Ω`1

{
P (s)

}
has to be the largest

possible.
On the other hand, let us consider a “s” belonging to Ω1, that is to say

associated to large singular values of X. This “s”, not impacted by shrinkage,
may tag a “`” belonging to Ω?2 and Ω?3. However, the related terms will be
negligible because of conditions (C4?) and because of the order of d?` compared
to λ. We refer to the proof of Lemma 2 for more details (see below).

5. Proof of Lemma 2 of the main manuscript

According to the proof of Lemma 2 in Rabier et al. [2] (proof relying on Condi-
tion (C3)), we have:

nÂ2 ∼ σ2
e#Ω1 + σ2

e

∑
s∈Ω2

1

(1 + Cs)2
.

On the other hand, recall that Â3 = 1
n

r∑
s=1

d4s
(d2s+λ)2

(
r?∑̀
=1

d?`P
(s)′P ?(`)Q?(`)′β?

)2

.
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Then,

nÂ3 ∼
∑
s∈Ω1

(
r?∑
`=1

d?`P
(s)′P ?(`)Q?(`)′β?

)2

+
∑
s∈Ω2

1

(1 + Cs)2

(
r?∑
`=1

d?`P
(s)′P ?(`)Q?(`)′β?

)2

+
∑
s∈Ω3

d4
s

λ2

(
r?∑
`=1

d?`P
(s)′P ?(`)Q?(`)′β?

)2

.

Since each “s” is allowed to tag only one “`”, we have (cf. assumptions in Section
3.1.1 of the main manuscript)

nÂ3 ∼
∑
`∈Ω?1

∑
s∈Ω`1

d?2`

∥∥∥P (s)P (s)′P ?(`)
∥∥∥2 ∥∥∥Q?(`)Q?(`)′β?∥∥∥2

(3)

+
∑
`∈Ω?2

∑
s∈Ω`1

d?2`

∥∥∥P (s)P (s)′P ?(`)
∥∥∥2 ∥∥∥Q?(`)Q?(`)′β?∥∥∥2

+
∑
`∈Ω?3

∑
s∈Ω`1

d?2`

∥∥∥P (s)P (s)′P ?(`)
∥∥∥2 ∥∥∥Q?(`)Q?(`)′β?∥∥∥2

+
∑
`∈Ω?1

∑
s∈Ω`2

d?2`
(1 + Cs)2

∥∥∥P (s)P (s)′P ?(`)
∥∥∥2 ∥∥∥Q?(`)Q?(`)′β?∥∥∥2

+
∑
`∈Ω?2

∑
s∈Ω`2

d?2`
(1 + Cs)2

∥∥∥P (s)P (s)′P ?(`)
∥∥∥2 ∥∥∥Q?(`)Q?(`)′β?∥∥∥2

+
∑
`∈Ω?3

∑
s∈Ω`2

d?2`
(1 + Cs)2

∥∥∥P (s)P (s)′P ?(`)
∥∥∥2 ∥∥∥Q?(`)Q?(`)′β?∥∥∥2

+
∑
`∈Ω?1

∑
s∈Ω`3

d?2`
d4
s

λ2

∥∥∥P (s)P (s)′P ?(`)
∥∥∥2 ∥∥∥Q?(`)Q?(`)′β?∥∥∥2

+
∑
`∈Ω?2

∑
s∈Ω`3

d?2`
d4
s

λ2

∥∥∥P (s)P (s)′P ?(`)
∥∥∥2 ∥∥∥Q?(`)Q?(`)′β?∥∥∥2

+
∑
`∈Ω?3

∑
s∈Ω`3

d?2`
d4
s

λ2

∥∥∥P (s)P (s)′P ?(`)
∥∥∥2 ∥∥∥Q?(`)Q?(`)′β?∥∥∥2

.

From now on, let us set ξ
(`)
1 = ξ(n), ∀` ∈ Ω?1, with 0 < b < ξ(n) ≤ 1 and

0 < b < 1. To begin with, let us focus on the first term of formula (3). We have:∑
`∈Ω?1

∑
s∈Ω`1

d?2`

∥∥∥P (s)P (s)′P ?(`)
∥∥∥2 ∥∥∥Q?(`)Q?(`)′β?∥∥∥2

∼
∑
`∈Ω?1

∑
s∈Ω`1

d?2`
ξ(n)

#Ω`1

n2τ

r?

∼
∑
`∈Ω?1

d?2` ξ(n)
n2τ

r?
.
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Let us now focus on the second term of formula (3). We have the relationship

∑
`∈Ω?2

∑
s∈Ω`1

d?2`

∥∥∥P (s)P (s)′P ?(`)
∥∥∥2 ∥∥∥Q?(`)Q?(`)′β?∥∥∥2

∼
∑
`∈Ω?2

∑
s∈Ω`1

d?2`
n2τ

r?
ξ

(`)
1

#Ω`1

∼
∑
`∈Ω?2

d?2`
n2τ

r?
ξ

(`)
1 .

Besides,
∑
`∈Ω?2

d?2`
n2τ

r? ξ
(`)
1 ≤

∑
`∈Ω?2

d?2`
n2τ

r? . Since by definition the cardinality of Ω?2

is bounded, and since λn
2τ

r? = o(1) (Condition (C4?)), we have
∑
`∈Ω?2

d?2`
n2τ

r? =

o(1), that implies
∑
`∈Ω?2

d?2`
n2τ

r? ξ
(`)
1 = o(1).

Let us further consider the third term of formula (3):

∑
`∈Ω?3

∑
s∈Ω`1

d?2`

∥∥∥P (s)P (s)′P ?(`)
∥∥∥2 ∥∥∥Q?(`)Q?(`)′β?∥∥∥2

∼
∑
`∈Ω?3

∑
s∈Ω`1

d?2`
ξ

(`)
1

#Ω`1

n2τ

r?

∼
∑
`∈Ω?3

d?2`
n2τ

r?
ξ

(`)
1 .

We have
∑
`∈Ω?3

d?2`
n2τ

r? ξ
(`)
1 ≤

∑
`∈Ω?3

d?2`
n2τ

r? . Since Ω?3 is bounded,
∑
`∈Ω?3

d?2` = o(λ).

Then, according to (C4?),
∑
`∈Ω?3

d?2`
n2τ

r? = o(1). As a consequence,
∑
`∈Ω?3

d?2`
n2τ

r? ξ
(`)
1 =

o(1).
Let us move on to the fourth term of formula (3):

∑
`∈Ω?1

∑
s∈Ω`2

d?2`
(1 + Cs)2

∥∥∥P (s)P (s)′P ?(`)
∥∥∥2 ∥∥∥Q?(`)Q?(`)′β?∥∥∥2

∼
∑
`∈Ω?1

∑
s∈Ω`2

d?2`
(1 + Cs)2

ξ
(`)
2

#Ω`2

n2τ

r?
.

We have:

∑
`∈Ω?1

∑
s∈Ω`2

d?2`
(1 + Cs)2

ξ
(`)
2

#Ω`2

n2τ

r?
≤
∑
`∈Ω?1

ξ
(`)
2 d?2`

n2τ

r?
.

According to Condition (C7?), n2τ

r?

∑
`∈Ω?1

ξ
(`)
2 d?2` = o(1), that implies∑

`∈Ω?1

∑
s∈Ω`2

d?2`
(1+Cs)2

ξ
(`)
2

#Ω`2

n2τ

r? = o(1).
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Let us focus on the fifth term of formula (3):∑
`∈Ω?2

∑
s∈Ω`2

d?2`
(1 + Cs)2

∥∥∥P (s)P (s)′P ?(`)
∥∥∥2 ∥∥∥Q?(`)Q?(`)′β?∥∥∥2

∼
∑
`∈Ω?2

∑
s∈Ω`2

d?2`
(1 + Cs)2

ξ
(`)
2

#Ω`2

n2τ

r?

∼
∑
`∈Ω?2

ξ
(`)
2 d?2`
#Ω`2

n2τ

r?

∑
s∈Ω`2

1

(1 + Cs)2
.

We have
∑
`∈Ω?2

ξ
(`)
2 d?2`
#Ω`2

n2τ

r?

∑
s∈Ω`2

1
(1+Cs)2

≤
∑
`∈Ω?2

ξ
(`)
2 d?2`

n2τ

r? ≤
∑
`∈Ω?2

d?2`
n2τ

r? . Since

#Ω?2 = O(1) and λn
2τ

r? = o(1) (Condition (C4?)) , we have
∑
`∈Ω?2

d?2`
n2τ

r? = o(1).

As a consequence,
∑
`∈Ω?2

∑
s∈Ω`2

d?2`
(1+Cs)2

ξ
(`)
2

#Ω`2

n2τ

r? = o(1).

Let us consider the sixth term of formula (3):∑
`∈Ω?3

∑
s∈Ω`2

d?2`
(1 + Cs)2

∥∥∥P (s)P (s)′P ?(`)
∥∥∥2 ∥∥∥Q?(`)Q?(`)′β?∥∥∥2

∼
∑
`∈Ω?3

∑
s∈Ω`2

d?2`
(1 + Cs)2

ξ
(`)
2

#Ω`2

n2τ

r?
.

We have ∑
`∈Ω?3

∑
s∈Ω`2

d?2`
(1 + Cs)2

ξ
(`)
2

#Ω`2

n2τ

r?
≤ n2τ

r?

∑
`∈Ω?3

d?2` .

Since Ω?3 is bounded,
∑
`∈Ω?3

d?2` = o(λ). Then, according to (C4?), we have

n2τ

r?

∑
`∈Ω?3

d?2` = o(1). It implies
∑
`∈Ω?3

∑
s∈Ω`2

d?2`
(1+Cs)2

ξ
(`)
2

#Ω`2

n2τ

r? = o(1).

Let us study the seventh term of formula (3):∑
`∈Ω?1

∑
s∈Ω`3

d?2`
d4
s

λ2

∥∥∥P (s)P (s)′P ?(`)
∥∥∥2 ∥∥∥Q?(`)Q?(`)′β?∥∥∥2

∼ n2τ

r?

∑
`∈Ω?1

d?2`
∑
s∈Ω`3

d4
s

λ2

ξ
(`)
3

#Ω`3
.

We have,

n2τ

r?

∑
`∈Ω?1

d?2`
∑
s∈Ω`3

d4
s

λ2

ξ
(`)
3

#Ω`3
≤ n2τ

r?

∑
`∈Ω?1

ξ
(`)
3 d?2`

(∑
s∈Ω3

d4
s

λ2

)
.

According to (C3) and (C8?), the right is term is equal to o(1). As a result, the
left term is also negligible.

Let us focus on the eighth term of formula (3):∑
`∈Ω?2

∑
s∈Ω`3

d?2`
d4
s

λ2

∥∥∥P (s)P (s)′P ?(`)
∥∥∥2 ∥∥∥Q?(`)Q?(`)′β?∥∥∥2

∼ n2τ

r?

∑
`∈Ω?2

∑
s∈Ω`3

d?2`
d4
s

λ2

ξ
(`)
3

#Ω`3

∼ n2τ

r?

∑
`∈Ω?2

∑
s∈Ω`3

λ

C?`

d4
s

λ2

ξ
(`)
3

#Ω`3
.
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We have

n2τ

r?

∑
`∈Ω?2

∑
s∈Ω`3

1

C?`

d4
s

λ

ξ
(`)
3

#Ω`3
≤ n2τ

r?

∑
`∈Ω?2

1

λ C?` #Ω`3

∑
s∈Ω`3

d4
s

≤ n2τ

r?

∑
`∈Ω?2

1

λ C?` #Ω`3

(∑
s∈Ω3

d4
s

)
.

Using (C4?), (C3) and the fact that #Ω?2 is bounded, we obtain that the right
term of the inequality is equal to o(1). Then, the left term is negligible.

Last, let us study the last (i.e. ninth) term of formula (3):∑
`∈Ω?3

∑
s∈Ω`3

d?2`
d4
s

λ2

∥∥∥P (s)P (s)′P ?(`)
∥∥∥2 ∥∥∥Q?(`)Q?(`)′β?∥∥∥2

.

We have:∑
`∈Ω?3

∑
s∈Ω`3

d?2`
d4
s

λ2

∥∥∥P (s)P (s)′P ?(`)
∥∥∥2 ∥∥∥Q?(`)Q?(`)′β?∥∥∥2

∼ n2τ

r?

∑
`∈Ω?3

d?2`
ξ

(`)
3

#Ω`3

∑
s∈Ω`3

d4
s

λ2
.

Besides,

n2τ

r?

∑
`∈Ω?3

d?2`
ξ

(`)
3

#Ω`3

∑
s∈Ω`3

d4
s

λ2
≤ n2τ

r?

∑
`∈Ω?3

d?2`

(∑
s∈Ω3

d4
s

λ2

)
.

We have already proved that n2τ

r?

(∑
`∈Ω?3

d?2`

)
= o(1). So, using (C3), the right

term is equal to o(1). Then,

n2τ

r?

∑
`∈Ω?3

d?2`
ξ

(`)
3

#Ω`3

∑
s∈Ω`3

d4
s

λ2
= o(1).

As a result, all the terms of formula (3) are negligible except the first one. It
leads to the relationship:

nÂ3 ∼ ξ(n)
∑
`∈Ω?1

d?2`
n2τ

r?
.

Conditions (C5), (C6), and (C1?) and the fact that ξ(n) is bounded away from
zero, ensure that

nÂ2 + nÂ3 ∼ σ2
e#Ω1 + σ2

e

∑
s∈Ω2

1

(1 + Cs)2
+ ξ(n)

∑
`∈Ω?1

d?2`
n2τ

r?

∼ ξ(n)
∑
`∈Ω?1

d?2`
n2τ

r?
. (4)
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On the other hand, recall that

Â1 =
1

n

r∑
s=1

β?′
d2
s

d2
s + λ

r?∑
`=1

Q?(`)d?`P
?(`)′P (s)

r?∑
j=1

d?jP
(s)′P ?(j)Q?(j)′β? .

Since each “s” is allowed to tag only one “`”, we have:

nÂ1 ∼
∑
`∈Ω?1

∑
s∈Ω`1

d?2`
ξ(n)

#Ω`1

n2τ

r?
+
∑
`∈Ω?2

∑
s∈Ω`1

d?2`
ξ

(`)
1

#Ω`1

n2τ

r?
+
∑
`∈Ω?3

∑
s∈Ω`1

d?2`
ξ

(`)
1

#Ω`1

n2τ

r?

+
∑
`∈Ω?1

∑
s∈Ω`2

d?2`
1 + Cs

ξ
(`)
2

#Ω`2

n2τ

r?
+
∑
`∈Ω?2

∑
s∈Ω`2

d?2`
1 + Cs

ξ
(`)
2

#Ω`2

n2τ

r?
+
∑
`∈Ω?3

∑
s∈Ω`2

d?2`
1 + Cs

ξ
(`)
2

#Ω`2

n2τ

r?

+
∑
`∈Ω?1

∑
s∈Ω`3

d?2`
d2
s

λ

ξ
(`)
3

#Ω`3

n2τ

r?
+
∑
`∈Ω?2

∑
s∈Ω`3

d?2`
d2
s

λ

ξ
(`)
3

#Ω`3

n2τ

r?
+
∑
`∈Ω?3

∑
s∈Ω`3

d?2`
d2
s

λ

ξ
(`)
3

#Ω`3

n2τ

r?
.

(5)

Let us study the first term of formula (5):∑
`∈Ω?1

∑
s∈Ω`1

d?2`
ξ(n)

#Ω`1

n2τ

r?
∼ ξ(n)

∑
`∈Ω?1

d?2`
n2τ

r?
.

Let us focus on the second term of formula (5):

∑
`∈Ω?2

∑
s∈Ω`1

d?2`
ξ

(`)
1

#Ω`1

n2τ

r?
∼
∑
`∈Ω?2

d?2` ξ
(`)
1

n2τ

r?
.

Besides,
∑
`∈Ω?2

d?2` ξ
(`)
1

n2τ

r? ≤
n2τ

r?

∑
`∈Ω?2

d?2` . Since #Ω?2 = O(1) and using (C4?), we

have
∑
`∈Ω?2

d?2`
n2τ

r? = o(1). Then, we have
∑
`∈Ω?2

d?2`
n2τ

r? ξ
(`)
1 = o(1).

Let us focus on the third term of formula (5):

∑
`∈Ω?3

∑
s∈Ω`1

d?2`
ξ

(`)
1

#Ω`1

n2τ

r?
∼ n2τ

r?

∑
`∈Ω?3

d?2` ξ
(`)
1 .

We have n2τ

r?

∑
`∈Ω?3

d?2` ξ
(`)
1 ≤ n2τ

r?

∑
`∈Ω?3

d?2` . Recall that we have already proved that

n2τ

r?

∑
`∈Ω?3

d?2` = o(1).

Let us handle the fourth term of formula (5):

∑
`∈Ω?1

∑
s∈Ω`2

d?2`
1 + Cs

ξ
(`)
2

#Ω`2

n2τ

r?
≤ n2τ

r?

∑
`∈Ω?1

ξ
(`)
2 d?2` .
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According to (C7?), the right term is equal to o(1).
Let us study the fifth term of formula (5):

∑
`∈Ω?2

∑
s∈Ω`2

d?2`
1 + Cs

ξ
(`)
2

#Ω`2

n2τ

r?
∼
∑
`∈Ω?2

d?2`
ξ

(`)
2

#Ω`2

n2τ

r?

∑
s∈Ω`2

1

1 + Cs
.

We have : ∑
`∈Ω?2

d?2`
ξ

(`)
2

#Ω`2

n2τ

r?

∑
s∈Ω`2

1

1 + Cs
≤
∑
`∈Ω?2

d?2`
n2τ

r?
.

Since #Ω?2 = O(1) and λn
2τ

r? = o(1), we have
∑
`∈Ω?2

d?2`
n2τ

r? = o(1). As a conse-

quence,
∑
`∈Ω?2

∑
s∈Ω`2

d?2`
1+Cs

ξ
(`)
2

#Ω`2

n2τ

r? = o(1).

Let us study the sixth term of formula (5). We have

n2τ

r?

∑
`∈Ω?3

d?2`
ξ

(`)
2

#Ω`2

∑
s∈Ω`2

1

1 + Cs
≤ n2τ

r?

∑
`∈Ω?3

d?2` .

Recall that we have already proved that n2τ

r?

∑
`∈Ω?3

d?2` = o(1).

Let us consider the seventh term of formula (5), that is to say

∑
`∈Ω?1

∑
s∈Ω`3

d?2`
d2
s

λ

ξ
(`)
3

#Ω`3

n2τ

r?
.

We have

n2τ

r?

∑
`∈Ω?1

d?2`
∑
s∈Ω`3

d2
s

λ

ξ
(`)
3

#Ω`3
≤ n2τ

r?

∑
`∈Ω?1

ξ
(`)
3 d?2`

(∑
s∈Ω3

d2
s

λ

)
.

According to (C2) and (C8?), the right term is equal to o(1).
Let us consider the eighth term of formula (5). We have:

∑
`∈Ω?2

∑
s∈Ω`3

d?2`
d2
s

λ

ξ
(`)
3

#Ω`3

n2τ

r?
∼ n2τ

r?

∑
`∈Ω?2

1

C?`

ξ
(`)
3

#Ω`3

∑
s∈Ω`3

d2
s .

Besides,

n2τ

r?

∑
`∈Ω?2

1

C?`

ξ
(`)
3

#Ω`3

∑
s∈Ω`3

d2
s ≤

n2τ

r?

∑
`∈Ω?2

1

C?`

ξ
(`)
3

#Ω`3

(∑
s∈Ω3

d2
s

)
.

Using (C4?), (C2), and the fact that #Ω?2 = O(1), the right term equals o(1).
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Let us study the ninth term of formula (5):

∑
`∈Ω?3

∑
s∈Ω`3

d?2`
d2
s

λ

ξ
(`)
3

#Ω`3

n2τ

r?
≤ n2τ

r?

∑
`∈Ω?3

d?2`

(∑
s∈Ω3

d2
s

λ

)
.

Since n2τ

r?

(∑
`∈Ω?3

d?2`

)
= o(1), the last term is equal to o(1) using (C2).

To conclude, we obtain:

nÂ1 ∼
∑
`∈Ω?1

d?2` ξ(n)
n2τ

r?
. (6)

Last,

nÂ4 ∼
∑
`∈Ω?1

d?2`
n2τ

r?
+
∑
`∈Ω?2

d?2`
n2τ

r?
+
∑
`∈Ω?3

d?2`
n2τ

r?
.

We have already shown that
∑
`∈Ω?2

d?2`
n2τ

r? = o(1) and
∑
`∈Ω?3

d?2`
n2τ

r? = o(1).

Then

nÂ4 ∼
∑
`∈Ω?1

d?2`
n2τ

r?
. (7)

Finally, using formulae (4), (6) and (7), we have for large n, ρ̂g ∼
√
ξ(n). This

concludes the proof of the first item of Lemma 2 of the main manuscript.
Let us prove the second statement of Lemma 2 of the manuscript.
Since p → +∞ when n → +∞, the distance between markers and QTLs

tends to zero. As a consequence, QTLs locations will match a few marker
locations (i.e. perfect LD), and each column of X? will be included in X.
Then, we have Rcol(X

?) ⊂ Rcol(X). As a consequence, ∀` ∈ Ω?1 ∪ Ω?2 ∪ Ω?3,

we have PP ′P ?` = P ?` and since
∥∥P ?(`)∥∥2

= 1, we have the relationship

ξ
(`)
1 + ξ

(`)
2 + ξ

(`)
3 = 1.

Let us recall condition (C7?): n
2τ

r?

∑
`∈Ω?1

ξ
(`)
2 d?2` = o(1). We have

∑
`∈Ω?1

ξ
(`)
2 d?2` ≤

(#Ω?1) d?21 max`∈Ω?1
ξ

(`)
2 and by definition, d?21 ∼ nψ with 0 < ψ ≤ 1. In this

context, let us set ∀` ∈ Ω?1 ξ
(`)
2 = 1/nθ1 with θ1 > ψ. Since d?21 max`∈Ω?1

ξ
(`)
2 ∼

nψ−θ1 and #Ω?1 = O(1), it is clear that condition (C7?) is fulfilled.

In the same way, if we set ∀` ∈ Ω?1 ξ
(`)
3 = 1/nθ2 with θ2 > ψ, condition

(C8?) is fulfilled. Then, using the new expressions of ξ
(`)
2 and ξ

(`)
3 , we have

ξ
(`)
1 = 1− ξ(`)

2 − ξ
(`)
3 = 1−1/nθ1 −1/nθ2 . Moreover, since ξ

(`)
2 → 0 and ξ

(`)
3 → 0,

we can deduce that ξ
(`)
1 → 1. As a result, using the notation ξ(n) for ξ

(`)
1 , we

obtain that ξ(n) −→ 1 and ρ̂g −→ ρoracleg . This concludes the proof.
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6. Some extreme cases

Let us come back to the assumptions given at the beginning of Section 3.1 of
the main manuscript (before paragraph 3.1.1). We propose to study here the
asymptotic behavior of our estimate ρ̂g when the projected signal belongs only
to one component. In this context, we present two lemmas.

6.1. The projected signal belongs only to Span
{
Q?(1)

}
Lemma 6.1. Let us consider same assumptions as in Theorem 2. Besides, let
us suppose that the projected signal belongs only to Span

{
Q?(1)

}
that is to say∥∥∥Q?(1)Q?(1)′β?

∥∥∥2

∼ n2τ ,
∥∥∥Q?(`)Q?(`)′β?∥∥∥2

= 0, for 1 < ` ≤ r?.

Moreover, let us assume that ` = 1 is tagged only by one s, i.e.
∥∥P (s)P (s)′P ?(1)

∥∥2 ∼
ξ(n) with 0 < b < ξ(n) ≤ 1, and

∥∥P (u)P (u)′P ?(1)
∥∥2

= 0 ∀u 6= s. Then

• For s ∈ Ω1 ∪ Ω2

– if 2τ + ψ > 1, then ρ̂g ∼
√
ξ(n) ρoracleg .

– if 2τ + ψ < 1, then

∗ if
∑r
u=1

d4u
(d2u+λ)2

= o
(
n2τ+ψ

)
, then ρ̂g ∼

√
ξ(n) ρoracleg

∗ if n2τ+ψ = o
(∑r

u=1
d4u

(d2u+λ)2

)
, then ρ̂g → 0.

• For s ∈ Ω3, λ ∼ Cnκ+η, ds ∼ nγ with C > 0, κ > max(0,−η), γ <
(κ+ η)/2

– if 4γ − 2κ− 2η + 2τ + ψ > 1, then ρ̂g ∼
√
ξ(n) ρoracleg

– if 4γ − 2κ− 2η + 2τ + ψ < 1, then

∗ if
∑r
u=1

d4u
(d2u+λ)2

= o
(
n4γ−2κ−2η+2τ+ψ

)
, then ρ̂g ∼

√
ξ(n) ρoracleg

∗ if n4γ−2κ−2η+2τ+ψ = o
(∑r

u=1
d4u

(d2u+λ)2

)
, then ρ̂g → 0.

Proof. The proof is divided in three parts, called a), b) and c).

a) The projected signal belongs only to Span
{
Q?(1)

}
, and is tagged

by one s ∈ Ω1

Let us suppose that the projected signal belongs only to Span
{
Q?(1)

}
, that is

to say ∥∥∥Q?(1)Q?(1)′β?
∥∥∥2

∼ n2τ ,
∥∥∥Q?(`)Q?(`)′β?∥∥∥2

= 0, for 1 < ` ≤ r? .
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Let us consider that ` = 1 is tagged by only one “s” that belongs to Ω1, i.e.∥∥P (s)P (s)′P ?(1)
∥∥2 ∼ ξ(n) only for that s, with 0 < b < ξ(n) ≤ 1.

Using Theorem 2, we have:

ρ̂g =

d2sd
?
1

d2s+λ

∥∥P (s)P (s)′P ?(1)
∥∥2 ∥∥Q?(1)Q?(1)′β?

∥∥(
σ2
e

r∑
u=1

d4u
(d2u+λ)2 +

d4sd
?2
1

(d2s+λ)2

∥∥P (s)P (s)′P ?(1)
∥∥2 ∥∥Q?(1)Q(1)′β?

∥∥2
)1/2

. (8)

Using further the fact that d?21 ∼ nψ and λ = o(d2
s) (since s ∈ Ω1), we obtain

d2
sd
?
1

d2
s + λ

∥∥∥P (s)P (s)′P ?(1)
∥∥∥2 ∥∥∥Q?(1)Q?(1)′β?

∥∥∥ ∼ ξ(n) nτ+ψ/2,

d4
sd
?2
1

(d2
s + λ)2

∥∥∥P (s)P (s)′P ?(1)
∥∥∥2 ∥∥∥Q?(1)Q?(1)′β?

∥∥∥2

∼ ξ(n) n2τ+ψ .

If 2τ + ψ > 1, then n = o(n2τ+ψ). As a consequence, since
r∑

u=1

d4u
(d2u+λ)2 ≤ r ≤ n

and 0 < b < ξ(n), we have ρ̂g ∼
√
ξ(n).

Let us now consider the case 2τ +ψ < 1. Then, it is obvious from expression

(8), that we need to assume
∑r
u=1

d4u
(d2u+λ)2

= o
(
n2τ+ψ

)
in order to obtain ρ̂g ∼√

ξ(n).

b) The projected signal belongs only to Span
{
Q?(1)

}
, and is tagged

by one s ∈ Ω2

Recall that

ρ̂g =

d2sd
?
1

d2s+λ

∥∥P (s)P (s)′P ?(1)
∥∥2 ∥∥Q?(1)Q?(1)′β?

∥∥(
σ2
e

r∑
u=1

d4u
(d2u+λ)2 +

d4sd
?2
1

(d2s+λ)2

∥∥P (s)P (s)′P ?(1)
∥∥2 ∥∥Q?(1)Q(1)′β?

∥∥2
)1/2

. (9)

Using further the fact that d?21 ∼ nψ, we obtain

d2
sd
?
1

d2
s + λ

∥∥∥P (s)P (s)′P ?(1)
∥∥∥2 ∥∥∥Q?(1)Q?(1)′β?

∥∥∥ ∼ ξ(n) nτ+ψ/2

1 + Cs
.

Besides,

d4
sd
?2
1

(d2
s + λ)2

∥∥∥P (s)P (s)′P ?(1)
∥∥∥2 ∥∥∥Q?(1)Q?(1)′β?

∥∥∥2

∼ ξ(n) n2τ+ψ

(1 + Cs)2
.

If 2τ+ψ > 1, then n = o(n2τ+ψ). As a consequence, since
r∑

u=1

d4u
(d2u+λ)2 ≤ r ≤ n

and 0 < b < ξ(n), we have ρ̂g ∼
√
ξ(n).

Let us now consider the case 2τ +ψ < 1. Then, it is obvious from expression

(10), that we need to assume
∑r
u=1

d4u
(d2u+λ)2

= o
(
n2τ+ψ

)
in order to have ρ̂g ∼√

ξ(n).
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c) The projected signal belongs only to Span
{
Q?(1)

}
, and is tagged

by one s ∈ Ω3

Recall that

ρ̂g =

d2sd
?
1

d2s+λ

∥∥P (s)P (s)′P ?(1)
∥∥2 ∥∥Q?(1)Q?(1)′β?

∥∥(
σ2
e

r∑
u=1

d4u
(d2u+λ)2 +

d4sd
?2
1

(d2s+λ)2

∥∥P (s)P (s)′P ?(1)
∥∥2 ∥∥Q?(1)Q(1)′β?

∥∥2
)1/2

. (10)

Let us suppose that λ ∼ Cnκ+η with κ > max(0,−η). Besides, we set ds ∼
nγ , with γ < (κ+ η)/2. Using further the fact that d?21 ∼ nψ, we obtain

d2
sd
?
1

d2
s + λ

∥∥∥P (s)P (s)′P ?(1)
∥∥∥2 ∥∥∥Q?(1)Q?(1)′β?

∥∥∥ ∼ ξ(n)

C
n2γ+τ+ψ/2−κ−η.

At the denominator in formula (10), we have:

d4
sd
?2
1

(d2
s + λ)2

∥∥∥P (s)P (s)′P ?(1)
∥∥∥2 ∥∥∥Q?(1)Q(1)′β?

∥∥∥2

∼ ξ(n)

C2
n4γ−2κ−2η+2τ+Ψ .

If 4γ − 2κ− 2η + 2τ + ψ > 1, then n = o(n4γ−2κ−2η+2τ+ψ). As a consequence,

since
r∑

u=1

d4u
(d2u+λ)2 ≤ r ≤ n and 0 < b < ξ(n), we have ρ̂g ∼

√
ξ(n). When

4γ−2κ−2η+2τ+ψ < 1, we need to impose
∑r
u=1

d4u
(d2u+λ)2

= o
(
n4γ−2κ−2η+2τ+ψ

)
in order to obtain ρ̂g ∼

√
ξ(n). This concludes the proof.

6.2. The projected signal belongs only to Span
{
Q?(r?)

}
Lemma 6.2. Let us consider same assumptions as in Theorem 2 of the main
manuscript. Besides, let us suppose that the projected signal belongs only to
Span

{
Q?(r

?)
}

, that is to say∥∥∥Q?(r?)Q?(r
?)′β?

∥∥∥2

∼ n2τ ,
∥∥∥Q?(s)Q?(s)′β?∥∥∥2

= 0, for 1 ≤ s < r?.

Moreover, let us assume that ` = r? is tagged only by one s such as
∥∥P (s)P (s)′P ?(r

?)
∥∥2 ∼

ξ(n) with 0 < b < ξ(n) ≤ 1, and
∥∥P (u)P (u)′P ?(r

?)
∥∥2

= 0, ∀u 6= s. Then

• If s ∈ Ω1 ∪ Ω2:

– if 2τ + η > 1, then ρ̂g ∼
√
ξ(n) ρoracleg .

– if 2τ + η < 1, then

∗ if
∑r
u=1

d4u
(d2u+λ)2

= o
(
n2τ+η

)
, then ρ̂g ∼

√
ξ(n) ρoracleg

∗ if n2τ+η = o
(∑r

u=1
d4u

(d2u+λ)2

)
, then ρ̂g → 0.
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• If s ∈ Ω3, λ ∼ Cnκ+η, ds ∼ nγ with C > 0, κ > max(0,−η), γ < (κ+η)/2:

– if 4γ − 2κ− 2η + 2τ + η > 1, then ρ̂g ∼
√
ξ(n) ρoracleg

– if 4γ − 2κ− 2η + 2τ + η < 1, then

∗ if
∑r
u=1

d4u
(d2u+λ)2

= o
(
n4γ−2κ−2η+2τ+η

)
, then ρ̂g ∼

√
ξ(n) ρoracleg .

∗ if n4γ−2κ−2η+2τ+η = o
(∑r

u=1
d4u

(d2u+λ)2

)
, then ρ̂g → 0.

The proof is largely inspired from the one of Lemma 6.1 above, as soon as
we replace ψ by η.

7. Estimation when TRN and TST samples do not come from the
same probability distribution

In this section, we will consider the general case where the TRN and TST
samples do not necessarily come from the same probability distribution. Fur-
thermore, let us assume that nnew new individuals are available, and that we are
willing to predict the phenotypes of those individuals. Xnew will be a random
matrix of size nnew × p containing the genomic markers of the new individuals.
The singular value decomposition of Xnew is the following:

Xnew = WFZ ′,

where W is a nnew × rnew matrix satisfying W ′W = Irnew , Z is a p × rnew
matrix satisfying Z ′Z = Irnew , and F = Diag (f1, . . . , frnew), with f1 ≥ . . . ≥
frnew > 0.

In the same way, X?
new is the random matrix at gene locations, and we con-

siderW ?F ?Z?′ the SVD decomposition ofX?
new, where F ? = Diag

(
f?1 , . . . , f

?
r?new

)
,

with f?1 ≥ . . . ≥ f?rnew > 0 and r?new denotes the rank of X?
new.

Using X?′
newXnew/nnew, X ′newXnew/nnew and X?′

newX
?
new/nnew to estimate

the covariances E (x?newx
′
new), E (xnewx

′
new) and E (x?newx

?′
new), we obtain the

following Theorem 7.1.

Theorem 7.1. Let us assume that Xnew and X?
new are random. Besides, we

suppose that the rows of Xnew are i.i.d., and also that the rows of X?
new are i.i.d.

Then, conditionnally on X and X?, an estimator of the genotypic accuracy is

ρ̌g =
Ǎ1(

Ǎ2 + Ǎ3

)1/2 (
Ǎ4

)1/2 , (11)
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where

Ǎ1 =
1

nnew

r∑
s=1

ds
d2
s + λ

rnew∑
`=1

r?new∑
k=1

f?kf` < W ?(k),W (`) >

×
r?∑
j=1

d?j < P (s), P ?(j) >< Z(`)Z?(k)′β?, Q(s)Q?(j)′β? > ,

Ǎ2 =
σ2
e

nnew

r∑
s=1

d2
s

(d2
s + λ)2

nnew∑
i=1

(
rnew∑
α=1

fα Q
(s)′Z(α)W

(α)
i

)2

,

Ǎ3 =
1

nnew

r∑
s=1

r∑
`=1

ds
d2
s + λ

d`
d2
` + λ

rnew∑
α=1

f2
α < Z(α)Z(α)′Q(s), Z(α)Z(α)′Q(`) >

×
r?∑
j=1

d?j < P (s), P ?(j) > Q?(j)′β?
r?∑
k=1

d?k < P (`), P ?(k) > Q?(k)′β?,

Ǎ4 =
1

nnew

r?new∑
α=1

f?2α

∥∥∥Z?(α)Z?(α)′β?
∥∥∥2

where < ., . > denotes the canonical scalar product.

Proof. Let us define Ǎ1 in the following way:

Ǎ1 :=
1

nnew

r∑
s=1

ds
d2
s + λ

β?′ X?′
newXnew Q

(s)P (s)′
r?∑
j=1

d?jP
?(j)Q?(j)′β?.

We have:

X?′
newXnew = Z?F ?W ?′WFZ ′

=

rnew∑
s=1

r?new∑
k=1

Z?(k)f?kfsW
?(k)′W (s)Z ′(s).

Then,

Ǎ1 =
1

nnew

r∑
s=1

ds
d2
s + λ

rnew∑
`=1

r?new∑
k=1

f?kf` < W ?(k),W (`) >

r?∑
j=1

d?j < P (s), P ?(j) >< Z(`)Z?(k)′β?, Q(s)Q?(j)′β? > .

Further, a natural estimator of A2 is

Ǎ2 =
σ2
e

nnew

r∑
s=1

d2
s

(d2
s + λ)2

Tr
(
XnewQ

(s)Q(s)′Q(s)Q(s)′X ′new

)
=

σ2
e

nnew

r∑
s=1

d2
s

(d2
s + λ)2

Tr
(
WFZ ′Q(s)Q(s)′ZFW ′

)
.
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We can easily see that

Tr
(
WFZ ′Q(s)Q(s)′ZFW ′

)
=

nnew∑
i=1

(
rnew∑
α=1

fαQ
(s)′Z(α)W

(α)
i

)2

,

which gives

Ǎ2 =
σ2
e

nnew

r∑
s=1

d2
s

(d2
s + λ)2

nnew∑
i=1

(
rnew∑
α=1

fαQ
(s)′Z(α)W

(α)
i

)2

.

A natural estimator of A3 is

Ǎ3 =
1

nnew

 r∑
s=1

ds
d2
s + λ

Q(s)P (s)′
r?∑
j=1

d?jP
?(j)Q?(j)′β?

′ X ′newXnew

×

 r∑
s=1

ds
d2
s + λ

Q(s)P (s)′
r?∑
j=1

d?jP
?(j)Q?(j)′β?

 .

We have the relationship

Ǎ3 =
1

nnew

 r∑
s=1

ds
d2
s + λ

XnewQ
(s)P (s)′

r?∑
j=1

d?jP
?(j)Q?(j)′β?

′

×

 r∑
s=1

ds
d2
s + λ

XnewQ
(s)P (s)′

r?∑
j=1

d?jP
?(j)Q?(j)′β?

 .

Using the fact that

XnewQ
(s) = WFZ ′Q(s) =

rnew∑
α=1

fαQ
(s)′Z(α)W (α),

we deduce

r∑
s=1

ds
d2
s + λ

XnewQ
(s)P (s)′

r?∑
j=1

d?jP
?(j)Q?(j)′β?

=

r∑
s=1

ds
d2
s + λ

rnew∑
α=1

fαQ
(s)′Z(α)W (α)

r?∑
j=1

d?jP
(s)′P ?(j)Q?(j)′β?.

Consequently,

Ǎ3 =
1

nnew

r∑
s=1

r∑
`=1

ds
d2
s + λ

d`
d2
` + λ

rnew∑
α=1

f2
α < Z(α)Z(α)′Q(s), Z(α)Z(α)′Q(`) >

×
r?∑
j=1

d?j < P (s), P ?(j) > Q?(j)′β?
r?∑
k=1

d?k < P (`), P ?(k) > Q?(k)′β?.
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8. Explicit formula for the accuracy ρ̃g of the improved predictor

Lemma 8.1. Let us consider same hypotheses as in Theorem 1 of the main
manuscript. Then, the quantity ρ̃g defined in Section 4 of the main manuscript
has the following expression

ρ̃g =
Ã1(

Ã2 + Ã3

)1/2 (
Ã4

)1/2
,

where

Ã1 =

r̃∑
s=1

dσ(s)

d2
σ(s) + λ

β?′ E (x?newx
′
new) Q(σ(s)P (σ(s))′

r?∑
j=1

d?jP
?(j)Q?(j)′β? ,

Ã2 = σ2
e

r̃∑
s=1

d2
σ(s)

(d2
s + λ)2

E
(∥∥∥Q(σ(s))Q(σ(s))′xnew

∥∥∥2
)

,

Ã3 =

 r̃∑
s=1

dσ(s)

d2
σ(s) + λ

Q(σ(s))P (σ(s))′
r?∑
j=1

d?jP
?(j)Q?(j)′β?

′ E (xnewx
′
new)

×

 r̃∑
s=1

dσ(s)

d2
σ(s) + λ

Q(σ(s))P (σ(s))′
r?∑
j=1

d?jP
?(j)Q?(j)′β?

 ,

Ã4 = A4.

Proof. After having replaced the quantity X ′V −1 by X ′V −1P̃ P̃ ′, formula (5) of
Rabier et al. [1] becomes

ρg =
β?′ E (x?newx

′
new)X ′V −1P̃ P̃ ′X?β?(

σ2
eE
(∥∥∥x′newX ′V −1P̃ P̃ ′

∥∥∥2
)

+ β?′X?′P̃ P̃ ′V −1XVar (xnew)X ′V −1P̃ P̃ ′X?β?
)1/2

σG

.

As a result, let us define

Ã1 := β?′ E (x?newx
′
new)X ′V −1P̃ P̃ ′X?β? , Ã2 := σ2

eE
(∥∥∥x′newX ′V −1P̃ P̃ ′

∥∥∥2
)
,

Ã3 := β?′X?′P̃ P̃ ′V −1XVar (xnew)X ′V −1P̃ P̃ ′X?β? , Ã4 := A4.

Using the fact that X ′V −1 = QDP ′, we have

Ã1 = β?′ E (x?newx
′
new)QDP ′P̃ P̃ ′X?β?.

After some simple algebra, we obtain

QDP ′P̃ =

(
dσ(1)

d2
σ(1) + λ

Q(σ(1)), . . . ,
dσ(r̃)

d2
σ(r̃) + λ

Q(σ(r̃))

)
. (12)
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Then,

Ã1 = β?′ E (x?newx
′
new)

(
r̃∑
s=1

dσ(s)

d2
σ(s) + λ

Q(σ(s))P (σ(s))′

)(
r?∑
s=1

d?sP
?(s)Q?(s)′

)
β?.

Let us now consider Ã2. According to Rabier et al. [2], we have

Ã2 = σ2
e

r̃∑
s=1

d2
σ(s)

(d2
σ(s) + λ)2

E
(∥∥∥Q(σ(s))Q(σ(s))′xnew

∥∥∥2
)
.

Furthermore, recall that

Ã3 = β?′X?′P̃ P̃ ′V −1XVar (xnew)X ′V −1P̃ P̃ ′X?β?.

Since the expression of X ′V −1P̃ P̃ ′X?β? is also present in Ã1, we easily obtain

Ã3 =

 r̃∑
s=1

dσ(s)

d2
σ(s) + λ

Q(σ(s))P (σ(s))′
r?∑
j=1

d?jP
?(j)Q?(j)′β?

′ E (xnewx
′
new)

×

 r̃∑
s=1

dσ(s)

d2
σ(s) + λ

Q(σ(s))P (σ(s))′
r?∑
j=1

d?jP
?(j)Q?(j)′β?

 .

9. Proof of Lemma 3 of the main manuscript

To begin with, let us recall the expression Ã1 given in Lemma 8.1 above:

Ã1 =

r̃∑
s=1

dσ(s)

d2
σ(s) + λ

β?′ E (x?newx
′
new) Q(σ(s)P (σ(s))′

r?∑
j=1

d?jP
?(j)Q?(j)′β? . (13)

Let us consider the following natural estimation ˆ̃A1:

ˆ̃A1 :=
1

n

r̃∑
s=1

dσ(s)

d2
σ(s) + λ

β?′ X?′X Q(σ(s)P (σ(s))′
r?∑
j=1

d?jP
?(j)Q?(j)′β?.

We have the relationship XQ(σ(s)) = dσ(s)P
(σ(s)). As a consequence, after some

straightforward matrix algebra, we obtain:

X?′XQ(σ(s)) = dσ(s)

r?∑
`=1

d?`Q
?(`)P ?(`)′P (σ(s)).

Then,

ˆ̃A1 =
1

n

r̃∑
s=1

β?′
d2
σ(s)

d2
σ(s) + λ

r?∑
`=1

Q?(`)d?`P
?(`)′P (σ(s))

r?∑
j=1

d?jP
(σ(s))′P ?(j)Q?(j)′β?.
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According to [2],

ˆ̃A2 =
σ2
e

n

r∑
s=1

d4
σ(s)

(d2
σ(s) + λ)2

.

An estimation for the quantity Ã3 is the following

ˆ̃A3 =
1

n

 r̃∑
s=1

X
dσ(s)

d2
σ(s) + λ

Q(σ(s))P (σ(s))′
r?∑
j=1

d?jP
?(j)Q?(j)′β?

′

×

 r̃∑
s=1

X
dσ(s)

d2
σ(s) + λ

Q(σ(s))P (σ(s))′
r?∑
j=1

d?jP
?(j)Q?(j)′β?

 .

Using the fact that XQ(σ(s)) = dσ(s)P
(σ(s)) and after some straightforward

matrix algebra, we obtain:

ˆ̃A3 =
1

n

r̃∑
s=1

d4
σ(s)

(d2
σ(s) + λ)2

(
r?∑
`=1

d?`P
(σ(s))′P ?(`)Q?(`)′β?

)2

.

10. Some extreme cases using the improved predictor

Let us now introduce a new result dealing with an extreme case:

Lemma 10.1. Let us consider same assumptions as in Theorem 2 of the main
manuscript. Besides, let us suppose that the projected signal belongs only to
Span

{
Q?(1)

}
, that is to say∥∥∥Q?(1)Q?(1)′β

∥∥∥2

∼ n2τ ,
∥∥∥Q?(s)Q?(s)′β∥∥∥2

= 0, for 1 < s ≤ r?.

Moreover, let us assume that ` = 1 is tagged only by one s ∈ {σ(1), . . . , σ(r̃)}
such as

∥∥P (s)P (s)′P ?(1)
∥∥2 ∼ ξ(n) with 0 < b < ξ(n) ≤ 1, and

∥∥P (u)P (u)′P ?(1)
∥∥2

=
0 ∀u 6= s. Then

1. If s ∈ Ω1 ∪ Ω2, 2τ + ψ < 1 and the following two conditions hold

•
∑r̃
u=1

d4σ(u)(
d2
σ(u)

+λ
)2 = o

(
n2τ+ψ

)
,

• n2τ+ψ = o
(∑r

u=1
d4u

(d2u+λ)2

)
,

we have ˆ̃ρg ∼
√
ξ(n)ρoracleg , whereas ρ̂g −→ 0.

2. If s ∈ Ω3, λ ∼ Cnκ+η, ds ∼ nγ with C > 0, κ > max(0,−η), γ < (κ+η)/2,
4γ − 2κ− 2η + 2τ + ψ < 1, and the following two conditions hold

•
∑r̃
u=1

d4σ(u)(
d2
σ(u)

+λ
)2 = o

(
n4γ−2κ−2η+2τ+ψ

)
;
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• n4γ−2κ−2η+2τ+ψ = o
(∑r

u=1
d4u

(d2u+λ)2

)
,

we have ˆ̃ρg ∼
√
ξ(n)ρoracleg , whereas ρ̂g −→ 0.

The proof is largely inspired from the proof of Lemma 6.1 of this Supple-
mentary Material. According to this lemma, there are some cases where, at the
same time, the new accuracy ˆ̃ρg is not negligible (asymptotically equivalent to√
ξ(n)ρoracleg ) and the classical accuracy ρ̂g is null.
Note that the analogue of this lemma, for a projected signal belonging only

to Span
{
Q?(r

?)
}

can be easily deduced.

11. Some results regarding the L2 prediction loss

We first prove the Remark 1 of the main manuscript in which we give an ex-
pression for the L2 prediction loss.

11.1. Proof of Remark 1 of the main manuscript

We have

E
{

(x′newβ̂ − x?′newβ?)2 | xnew , x?new
}

= E
{

(x′newX
′V −1Y − x′newX ′V −1X?β? + x′newX

′V −1X?β? − x?′newβ?)2 | xnew , x?new
}

= E
[{
x′newX

′V −1(Y −X?β?)
}2 | xnew

]
+ E

[{
x′newX

′V −1X?β? − x?′newβ?
}2 | xnew , x?new

]
+ 2 (x′newX

′V −1X?β? − x?′newβ?) E
[
x′newX

′V −1(Y −X?β?) | xnew
]

= σ2
e

∥∥x′newX ′V −1
∥∥2

+ β?′X?′V −1Xxnewx
′
newX

′V −1X?β?

+ β?′x?newx
?′
newβ

? − 2β?′x?newx
′
newX

′V −1X?β?.

As a result,

E
{

(x′newβ̂ − x?′newβ?)2
}

= σ2
eE
{∥∥x′newX ′V −1

∥∥2
}

+ β?′X?′V −1XVar (xnew)X ′V −1X?β? + σ2
G

− 2β?′ E (x?newx
′
new)X ′V −1X?β?

= A2 +A3 +A4 − 2A1 .

This gives the expression of the L2 prediction loss.

11.2. Estimation of the L2 prediction loss, when TRN and TST
samples come from the same probability distribution

A natural estimation is the following

Ê
{

(x′newβ̂ − x?′newβ?)2
}

= Â2 + Â3 + Â4 − 2Â1 .
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According to formulae (4), (6) and (7),

nÂ4 ∼
∑
`∈Ω?1

d?2`
n2τ

r?

nÂ2 + nÂ3 ∼ ξ(n)
∑
`∈Ω?1

d?2`
n2τ

r?

nÂ1 ∼
∑
`∈Ω?1

d?2` ξ(n)
n2τ

r?
.

As a result, we have:

Â2 + Â3 + Â4 − 2Â1 ∼
1− ξ(n)

n

∑
`∈Ω?1

d?2`
n2τ

r?
.

By definition, the loss coefficient 1 − ξ(n) is bounded by 0 and 1. In order to

ensure that the quantity Ê
{

(x′newβ̂ − x?′newβ?)2
}

tends to 0, it suffices to have

∑
`∈Ω?1

d?2`
n2τ

r?
= o(n) .

Indeed, recall that under condition (C1?), we have
n2τ

r?

∑
`∈Ω?1

d?2` → +∞.

As a result, it is sufficient that
n2τ

r?

∑
`∈Ω?1

d?2` diverges to +∞ at a rate slower

than n.

11.3. How to improve the quality of the prediction

The L2 prediction loss, associated to the new estimator β̃ is

E
{

(x′newβ̃ − x?′newβ?)2
}

= Ã2 + Ã3 + Ã4 − 2Ã1 .

Assuming that TRN and TST samples come from the same probability distri-
bution, an estimation of this quantity is the following

Ê
{

(x′newβ̃ − x?′newβ?)2
}

= ˆ̃A2 + ˆ̃A3 + ˆ̃A4 − 2 ˆ̃A1

where ˆ̃A2, ˆ̃A3, ˆ̃A4 and ˆ̃A1 are given in Lemma 3 of the main manuscript.

Remark 11.1. Note that the prediction is improved if

Ê
{

(x′newβ̃ − x?′newβ?)2
}
< Ê

{
(x′newβ̂ − x?′newβ?)2

}
,
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i.e.

Â2 − ˆ̃A2 + Â3 − ˆ̃A3 + 2( ˆ̃A1 − Â1) > 0 .

According to the main text (below Lemma 5),

Â1 − ˆ̃A1 = Ĉov(~Ynew, Ynew) ,

Â2 + Â3 − ( ˆ̃A2 + ˆ̃A3) = V̂ar(~Ynew).

As a result, this condition can be rewritten

V̂ar(~Ynew) > 2Ĉov(~Ynew, Ynew) .

Table 1
Same as Table 2 of the main manuscript except that more QTLs are considered on [0,T].
100 QTLs with effects 0.30 are located respectively every 0.01M, 0.04M, and 0.06M when

T=1, T=4, and T=6. Recall that the nuisance parameters are estimated thanks to a TRN
map containing 1000 markers on [0,T]. The TST map contains only 500 markers on [0,T].

Method 50 generations 70 generations 100 generations MSE

Emp. Acc. 0.6489 0.6499 0.6872
ρ̌ph(X?, X?

new, β
?) 0.6383 (0.0027) 0.6451 (0.0028) 0.6846 (0.0018) 0.0024

ρ̂ph(X̂?, β̂?
LASSO) 0.6102 (0.0059) 0.6793 (0.0050) 0.6978 (0.0027) 0.0045

T=1 ρ̂ph(X̂?, β̂?
GPLASSO) 0.5909 (0.0075) 0.6451 (0.0044) 0.6916 (0.0026) 0.0048

ρ̂ph(X̂?, β̂?
ADLASSO) 0.6433 (0.0039) 0.6793 (0.0050) 0.7069 (0.0027) 0.0039

ρ̌pLD
ph (β̂ADLASSO) 0.6578 (0.0044) 0.6667 (0.0044) 0.7156 (0.0029) 0.0039

ρ̂pLD
ph (β̂ADLASSO) 0.6839 (0.0058) 0.7163 (0.0092) 0.7598 (0.0074) 0.0075

Emp. Acc. 0.4451 0.4821 0.4053
ρ̌ph(X?, X?

new, β
?) 0.4450 (0.0039) 0.4634 (0.0039) 0.4095 (0.0068) 0.0049

ρ̂ph(X̂?, β̂?
LASSO) 0.4652 (0.0094) 0.4234 (0.0138) 0.4326 (0.0136) 0.0123

T=4 ρ̂ph(X̂?, β̂?
GPLASSO) 0.4264 (0.0118) 0.3610 (0.0257) 0.3872 (0.0152) 0.0176

ρ̂ph(X̂?, β̂?
ADLASSO) 0.5551 (0.0192) 0.5103 (0.0108) 0.5273 (0.0252) 0.0184

ρ̌pLD
ph (β̂ADLASSO) 0.3603 (0.0245) 0.3602 (0.0326) 0.2866 (0.04651) 0.0345

ρ̂pLD
ph (β̂ADLASSO) 0.4414 (0.0212) 0.4104 (0.0243) 0.3371 (0.0419) 0.0291

Emp. Acc. 0.3895 0.3666 0.3599
ρ̌ph(X?, X?

new, β
?) 0.3861 (0.0049) 0.3575 (0.0045) 0.3507 (0.0042) 0.0045

ρ̂ph(X̂?, β̂?
LASSO) 0.3983 (0.0123) 0.4171 (0.0131) 0.3774 (0.0121) 0.0125

T=6 ρ̂ph(X̂?, β̂?
GPLASSO) 0.3403 (0.01824) 0.3575 (0.0116) 0.3312 (0.0137) 0.0145

ρ̂ph(X̂?, β̂?
ADLASSO) 0.5007 (0.0233) 0.5085 (0.0294) 0.4894 (0.0247) 0.0258

ρ̌pLD
ph (β̂ADLASSO) 0.1124 (0.0995) 0.2016 (0.0569) 0.1847 (0.0545) 0.0703

ρ̂pLD
ph (β̂ADLASSO) 0.1415 (0.0926) 0.2556 (0.0546) 0.2293 (0.0493) 0.0655
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Table 2
Same as Table 1 except that more markers are considered. The nuisance parameters are

estimated thanks to a TRN map containing 2000 markers on [0,T]. The TST map contains
only 1000 markers on [0,T]. QTL locations are the same as in Table 1.

Method 50 generations 70 generations 100 generations MSE

Emp. Acc. 0.6612 0.6484 0.6831
ρ̌ph(X?, X?

new, β
?) 0.6616 (0.0023) 0.6396 (0.0023) 0.6787 (0.0020) 0.0022

ρ̂ph(X̂?, β̂?
LASSO) 0.5935 (0.0098) 0.5855 (0.0079) 0.6333 (0.0066) 0.0081

T=1 ρ̂ph(X̂?, β̂?
GPLASSO) 0.5722 (0.0131) 0.5665 (0.0115) 0.6180 (0.0082) 0.0109

ρ̂ph(X̂?, β̂?
ADLASSO) 0.6477 (0.0033) 0.6213 (0.0042) 0.6676 (0.0035) 0.0037

ρ̌pLD
ph (β̂ADLASSO) 0.6149 (0.0054) 0.5825 (0.0077) 0.6676 (0.0035) 0.0055

ρ̂pLD
ph (β̂ADLASSO) 0.6449 (0.0037) 0.6291 (0.0037) 0.6636 (0.0036) 0.0037

Emp. Acc. 0.5047 0.4723 0.4760
ρ̌ph(X?, X?

new, β
?) 0.5118 (0.0039) 0.4596 (0.0039) 0.4727 (0.0039) 0.0039

ρ̂ph(X̂?, β̂?
LASSO) 0.5157 (0.0083) 0.4574 (0.0122) 0.4201 (0.0153) 0.0119

T=4 ρ̂ph(X̂?, β̂?
GPLASSO) 0.4547 (0.0123) 0.4078 (0.0189) 0.3663 (0.0227) 0.0179

ρ̂ph(X̂?, β̂?
ADLASSO) 0.5986 (0.0163) 0.5477 (0.0180) 0.5420 (0.0128) 0.0157

ρ̌pLD
ph (β̂ADLASSO) 0.4366 (0.0166) 0.3639 (0.0294) 0.3416 (0.0409) 0.0289

ρ̂pLD
ph (β̂ADLASSO) 0.5206 (0.0197) 0.4567 (0.0219) 0.4171 (0.0327) 0.0247

Emp. Acc. 0.4306 0.4870 0.4384
ρ̌ph(X?, X?

new, β
?) 0.4244 (0.0039) 0.4805 (0.0029) 0.4342 (0.0042) 0.0037

ρ̂ph(X̂?, β̂?
LASSO) 0.4205 (0.0173) 0.4529 (0.0155) 0.3733 (0.0194) 0.0174

T=6 ρ̂ph(X̂?, β̂?
GPLASSO) 0.3429 (0.0229) 0.4009 (0.0192) 0.3279 (0.0267) 0.0229

ρ̂ph(X̂?, β̂?
ADLASSO) 0.5307 (0.0241) 0.5582 (0.0146) 0.4994 (0.0178) 0.0188

ρ̌pLD
ph (β̂ADLASSO) 0.2890 (0.0476) 0.3424 (0.0419) 0.2581 (0.0650) 0.0515

ρ̂pLD
ph (β̂ADLASSO) 0.3611 (0.0415) 0.4269 (0.0313) 0.3156 (0.0597) 0.0442

Table 3
Same as Table 7 of the main manuscript, except that 1553 SNPs are used for the TST

sample.

Dataset ID Set 1 Set 2 Set 3 Set 4
Emp. Acc. 0.5668 0.5151 0.4889 0.5089

ρ̂ph(X̂?, β̂?
ADLASSO) 0.4535 (0.0403) 0.4489 (0.0422) 0.4438 (0.0379) 0.4379 (0.0394)

ρ̂ph(X̂?, β̂?
LASSO) 0.4823 (0.0273) 0.4778 (0.0258) 0.4722 (0.0235) 0.4594 (0.0241)

ρ̌pLD
ph (β̂ADLASSO) 0.5072 (0.0143) 0.4267 (0.0205) 0.3497 (0.0322) 0.2822 (0.0814)

ρ̂pLD
ph (β̂ADLASSO) 0.5526 (0.0121) 0.5081 (0.0156) 0.4205 (0.0203) 0.3587 (0.0625)

Dataset ID Set 5 Set 6 Set 7 Set 8
Emp. Acc. 0.5730 0.5091 0.5142 0.5242

ρ̂ph(X̂?, β̂?
ADLASSO) 0.4909 (0.0511) 0.4456 (0.0391) 0.4497 (0.0369) 0.4520 (0.0429)

ρ̂ph(X̂?, β̂?
LASSO) 0.4579 (0.0288) 0.4686 (0.0244) 0.4825 (0.0222) 0.4805 (0.0259)

ρ̌pLD
ph (β̂ADLASSO) 0.4816 (0.0209) 0.4134 (0.0227) 0.4830 (0.0099) 0.4293 (0.0233)

ρ̂pLD
ph (β̂ADLASSO) 0.5314 (0.0166) 0.4977 (0.0164) 0.5714 (0.0149) 0.4922 (0.0179)

Dataset ID Set 9 Set 10
Emp. Acc. 0.5590 0.5156

ρ̂ph(X̂?, β̂?
ADLASSO) 0.4496 (0.0483) 0.4409 (0.0407)

ρ̂ph(X̂?, β̂?
LASSO) 0.4831 (0.0276) 0.4723 (0.0245)

ρ̌pLD
ph (β̂ADLASSO) 0.4936 (0.0176) 0.3664 (0.0357)

ρ̂pLD
ph (β̂ADLASSO) 0.5403 (0.01615) 0.4461 (0.0227)
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Table 4
Same as Table 7 of the main manuscript, except that 3076 SNPs are used for the TST

sample.

Dataset ID Set 1 Set 2 Set 3 Set 4
Emp. Acc. 0.5288 0.5639 0.4662 0.4851

ρ̂ph(X̂?, β̂?
ADLASSO) 0.4417 (0.0449) 0.4494 (0.0478) 0.4351 (0.0364) 0.4456 (0.0377)

ρ̂ph(X̂?, β̂?
LASSO) 0.4692 (0.0281) 0.4813 (0.0288) 0.4587 (0.0241) 0.4684 (0.0237)

ρ̌pLD
ph (β̂ADLASSO) 0.4387 (0.0213) 0.5304 (0.0111) 0.2552 (0.0758) 0.3152 (0.0415)

ρ̂pLD
ph (β̂ADLASSO) 0.5372 (0.0151) 0.6094 (0.1449) 0.3328 (0.0607) 0.4079 (0.0210)

Dataset ID Set 5 Set 6 Set 7 Set 8
Emp. Acc. 0.5581 0.5096 0.5349 0.5717

ρ̂ph(X̂?, β̂?
ADLASSO) 0.4526 (0.0482) 0.4411 (0.0403) 0.4481 (0.0449) 0.4521 (0.0499)

ρ̂ph(X̂?, β̂?
LASSO) 0.4806 (0.0293) 0.4648 (0.0253) 0.4762 (0.0263) 0.4856 (0.0288)

ρ̌pLD
ph (β̂ADLASSO) 0.4818 (0.0191) 0.4002 (0.0249) 0.4237 (0.0269) 0.5277 (0.0148)

ρ̂pLD
ph (β̂ADLASSO) 0.5469 (0.0145) 0.4784 (0.0167) 0.4832 (0.0206) 0.6113 (0.0148)

Dataset ID Set 9 Set 10
Emp. Acc. 0.4969 0.5266

ρ̂ph(X̂?, β̂?
ADLASSO) 0.4421 (0.0389) 0.4533 (0.0410)

ρ̂ph(X̂?, β̂?
LASSO) 0.4637 (0.0242) 0.4798 (0.0244)

ρ̌pLD
ph (β̂ADLASSO) 0.3419 (0.0354) 0.4439 (0.0201)

ρ̂pLD
ph (β̂ADLASSO) 0.4312 (0.0354) 0.5138 (0.0148)


	Proof of Theorem 1 of the main manuscript
	Proof of Theorem 2 of the main manuscript
	Proof of Lemma 1 of the main manuscript
	Some intuition on the different conditions and on the proof of Lemma 2 of the main manuscript
	Proof of Lemma 2 of the main manuscript
	Some extreme cases
	The projected signal belongs only to Span{Q(1)}
	The projected signal belongs only to Span{Q(r)}

	Estimation when TRN and TST samples do not come from the same probability distribution
	Explicit formula for the accuracy g of the improved predictor
	Proof of Lemma 3 of the main manuscript
	Some extreme cases using the improved predictor
	Some results regarding the L2 prediction loss
	Proof of Remark 1 of the main manuscript
	Estimation of the L2 prediction loss, when TRN and TST samples come from the same probability distribution
	How to improve the quality of the prediction

	References

