Integral points on circles
Résumé
Sixty years ago the first named author gave an example \cite{sch} of a circle passing through an arbitrary number of integral points.
Now we shall prove: {\it
The number $N$ of integral points on the circle $(x-a)^2+(y-b)^2=r^2$ with radius $r=\frac{1}{n}\sqrt{m}$, where $m,n\in\mathbb Z$, $m,n>0$, $\gcd(m,n^2)$ squarefree and $a,b\in\mathbb Q$ does not exceed $r(m)/4$, where $r(m)$ is the number of representations
of $m$ as the sum of two squares, unless $n|2$ and $n\cdot (a,b)\in\mathbb Z^2$; then $ N\leq r(m)$}.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...