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Integral points on circles

A. Schinzel and M. Ska lba

In memory of S. Srinivasan

Abstract. Sixty years ago the first named author gave an example [Sch58] of a circle passing through an arbitrary number of

integral points. Now we shall prove: The number N of integral points on the circle (x−a)2 + (y− b)2 = r2 with radius r = 1
n

√
m,

where m,n ∈ Z, m,n > 0, gcd(m,n2) squarefree and a, b ∈ Q does not exceed r(m)/4, where r(m) is the number of representations
of m as the sum of two squares, unless n|2 and n · (a, b) ∈ Z2; then N ≤ r(m).

Keywords. sums of two squares, Gaussian integers

2010 Mathematics Subject Classification. 11D25, 11D09.

Sixty years ago the first named author gave an example [Sch58] of a circle passing through an
arbitrary number of integral points. If the center of a circle is not a rational point (i.e. not both
coordinates are rational numbers) then it passes through no more than 2 rational points. In fact, the
equation of the perpendicular bisector of a segment joining two rational points has rational coefficients,
hence the circumcenter of a triangle with rational vertices has to be rational as well. From now on
we will consider only circles

(x− a)2 + (y − b)2 = r2, (0.1)

with a, b ∈ Q and we shall prove

Theorem 0.1. The number N of integral points on the circle (0.1) with radius r = 1
n

√
m, where

m,n ∈ Z, m,n > 0, gcd(m,n2) squarefree does not exceed r(m)/4, where r(m) is the number of
representations of m as the sum of two squares, unless n|2 and n · (a, b) ∈ Z2; then N ≤ r(m).

Lemma 0.2. Assume that β, γ1, γ2 ∈ Z[i] and c ∈ N satisfy

N(γ1) = N(γ2) = c2, (0.2)

βγ1 ≡ βγ2 (mod c), (0.3)

if a rational prime t divides c then t 6 |βγ1 and t 6 |βγ2. (0.4)

Then γ1 ∼ γ2 in Z[i].

Proof. We assume from the beginning that γ1 6= γ2.

1. Case gcd(β, c) ∼ 1: We can divide the congruence (0.3) by β and obtain

γ1 − γ2 = cδ with δ ∈ Z[i], δ 6= 0.

Further
N(γ1) +N(γ2)− γ1γ2 − γ2γ1 = c2N(δ).

If we put γ1γ2 = f + gi with f, g ∈ Z then by equation (0.2) we obtain

2f = (2−N(δ))c2.
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Hence
f =

u

2
· c2 with u ∈ Z, u ≤ 1.

Because
f2 + g2 = N(γ1γ2) = c4 by (0.2)

one obtains

g2 = c4 − f2 = c4(1− u2

4
).

It follows u ∈ {−2,−1, 0, 1} but u ∈ {−1, 1} would lead to g 6∈ Q. Hence u ∈ {0,−2}.
If u = 0 then f = 0, g = ±c2 hence

γ1γ2 = ±c2i what gives γ1c
2 = ±c2iγ2,

and finally γ1 = ±iγ2.
If u = −2 then f = −c2,g = 0 hence γ1γ2 = −c2 and γ1 = −γ2.

2. Case N(gcd(β, c)) = d > 1: We adopt inductive method and assume that the assertion of lemma
holds for N(gcd(β, c)) < d. Let π be a prime element of the ring Z[i] satisfying π|β and π|c. By
condition (0.4) (and (0.2)) N(π) = p is a rational prime of the form 4k + 1.
By (0.2) π|γ1 or π|γ1, but the latter is excluded by (0.4), hence π2l||γ1 where pl||c. In the same way
π2l||γ2. Rewrite the initial equality

βγ1 − βγ2 = δc with δ ∈ Z[i], δ 6= 0

in the form

β
γ1

π2l
− β γ2

π2l
=
δπ2l

pl
· c
pl

where all fractions are algebraic integers. Using the inductive assumption finishes the proof of lemma.

Proof of Theorem. The considered circle (0.1) is given by the equation

(x− a)2 + (y − b)2 =
m

n2
. (0.5)

Put a = A/C, b = B/C, where A,B,C ∈ Z, C > 0, (A,B,C) = 1. It follows that n|C and hence
C = nc with c ∈ N. The number N of integral points on the circle (0.5) satisfies

N = card{(x, y) ∈ Z2|(Cx−A)2 + (Cy −B)2 = c2m}.

Each solution (x, y) ∈ Z2 to the equation

(Cx−A)2 + (Cy −B)2 = c2m (0.6)

is encoded by the equality
(Cx−A) + (Cy −B)i = β · γ (0.7)

with β, γ ∈ Z[i] and N(β) = m, N(γ) = c2.
Assume now to the contrary that the number of solutions (x, y) ∈ Z2 to the equation (0.6) exceeds
r(m)/4. It follows that there exist β1, β2, γ1, γ2 ∈ Z[i] satisfying

β1 ∼ β2, N(β1) = N(β2) = m, N(γ1) = N(γ2) = c2,

γ1β1 ≡ γ2β2 (mod c) and γ1β1 6= γ2β2.

Adjusting γ1, γ2 for a unit (if necessary) we may assume that there are β, γ1, γ2 ∈ Z[i] satisfying

N(β) = m, N(γ1) = N(γ2) = c2, βγ1 ≡ βγ2 (mod c), γ1 6= γ2.
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Now we infer by Lemma that
γ2 ∈ {−γ1, iγ1,−iγ1}.

((0.4) is fulfilled by the assumption (A,B,C) = 1.) In all above cases we get

2βγ1 ≡ 0 (mod c).

For c > 2 this contradicts the condition (A,B,C) = 1. In case c = 2, for any integers A,B and C ≡ 0
(mod 2) the conditions (A,B,C) = 1 and

(Cx−A)2 + (Cy −B)2 = 4m

are incompatible. Concluding: N > r(m)/4 is possible only for c = 1. In case c = 1, C = n and
by (0.6) one gets N ≤ r(m). It remains to deduce n|2 from N > r(m)/4. It follows from the last
inequality that there exist integers x1, x2, y1, y2 and k ∈ {1, 2, 3} satisfying

(nx2 −A) + (ny2 −B)i = ik[(nx1 −A) + (ny1 −B)i]

hence
(1− ik)(A+Bi) ≡ 0 (mod n).

It follows n|(2A, 2B) and since (A,B, n) = 1 we infer that n|2.

Remark. The number 1/4 in our theorem is optimal and here is an example. Let m be of the form
3k+ 2 and satisfying r(m) > 0. The equality m = x2 + y2 implies x ≡ ±1 (mod 3), y ≡ ±1 (mod 3).
It follows that (x− 1/3)2 + (y − 1/3)2 = m/9 has r(m)/4 integer solutions.
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