Multilabel, multiscale topological transformation for cerebral MRI segmentation post-processing - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Multilabel, multiscale topological transformation for cerebral MRI segmentation post-processing

Résumé

Accurate segmentation of cerebral structures remains, after two decades of research, a complex task. In particular, obtaining satisfactory results in terms of topology, in addition to quantitative and geometrically correct properties is still an ongoing issue. In this paper, we investigate how recent advances in multilabel topology and homotopy-type preserving transformations can be involved in the development of multiscale topological modelling of brain structures, and topology-based post-processing of segmentation maps of brain MR images. In this context, a preliminary study and a proof-of-concept are presented.
Fichier principal
Vignette du fichier
Tor-Diez ISMM 2019.pdf (256.69 Ko) Télécharger le fichier
Tor Diez ISMM 2019 Poster.pdf (1010.69 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01982972 , version 1 (23-03-2019)

Identifiants

Citer

Carlos Tor-Díez, Sylvain Faisan, Loïc Mazo, Nathalie Bednarek, Hélène Meunier, et al.. Multilabel, multiscale topological transformation for cerebral MRI segmentation post-processing. International Symposium on Mathematical Morphology (ISMM), 2019, Saarbrücken, Germany. pp.471-482, ⟨10.1007/978-3-030-20867-7_36⟩. ⟨hal-01982972⟩
233 Consultations
203 Téléchargements

Altmetric

Partager

More