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Abstract. Accurate segmentation of cerebral structures remains, after
two decades of research, a complex task. In particular, obtaining sat-
isfactory results in terms of topology, in addition to quantitative and
geometrically correct properties is still an ongoing issue. In this paper,
we investigate how recent advances in multilabel topology and homotopy-
type preserving transformations can be involved in the development of
multiscale topological modelling of brain structures, and topology-based
post-processing of segmentation maps of brain MR images. In this con-
text, a preliminary study and a proof-of-concept are presented.
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1 Introduction

Topological methods generate a growing interest in the field of medical image
processing and analysis. Indeed, ensuring the coherence of structural properties
of the organs and tissues in 3D medical data is a cornerstone e.g. for registration,
modelling or visualization tasks. In particular, topological concepts developed in
the field of discrete imagery, and in particular digital topology, can allow for the
development of efficient approaches that take into account not only quantitative
and morphometric information carried by anatomical objects of interest, but
also more intrinsic properties related to their structure [21].

In particular, the brain has received a specific attention. Indeed, by contrast
with other organs, it exhibits an important interindividual variability from shape
and size points of view. In the meantime, it is organized into many distinct
subparts and tissues with a strong topological invariance. Taking into account
topological priors is then a relevant hypothesis for guiding and/or regularizing
image processing procedures [19].

This article presents a contribution in the field of topology-based brain struc-
ture segmentation. More especially, we focus on topological post-processing of
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multi-label segmentation maps obtained beforehand with efficient, but non-
topologically guided, methods. Our purpose is then to build, from such seg-
mentation maps, a corrected output consolidated by topological priors.

This research area is not new; related works are recalled in Section 2. How-
ever, the embedding of topological priors in segmentation paradigms is a complex
task, a fortiori when we consider n-ary segmentation, with n > 2, i.e. more than
one object vs. its background. In this context, our contributions are the follow-
ing. First, we rely on a topological framework introduced a few years ago by some
of the authors, that allows to correctly model digital images by considering the
topology of n labels but also that of the combinations within their power lattice
[18, 16]. Second, we consider a multiscale approach for topological modelling of
the cerebral structures. Indeed, we assume that the topological assumptions that
should guide a segmentation process actually depend on the level of details of the
observed structures. Based on these two, multilabel and multiscale, paradigms,
we develop a generic, homotopic deformable model methodology that progres-
sively refines a segmentation map with respect to the data and the associated
topological priors.

In Section 3, we recall the involved topological framework and how it can be
used for multiscale, multilabel topological modelling of anatomical structures. In
Section 4, we describe the algorithmic scheme that allows us to progressively re-
fine an initial segmentation with respect to this multiscale topological modelling.
Experimental results are proposed in Section 5; at this stage, they have mainly
an illustrative value. Section 6 concludes this article by presenting the main per-
spectives offered by the proposed approach and the remaining challenges to be
tackled.

2 Related Works

Topology-based segmentation methods dedicated to brain structures can be
mainly divided into two families [19]: on the one hand, the methods that consider
a topological prior for guidance from the very beginning of the process; on the
other hand, the methods that aim at recovering a posteriori some correct topo-
logical properties. The first lie in the family of topological deformable models;
the second in the family of topological correction methods.

In most of these methods, the considered structures of interest are the main
three classes of tissues, namely grey matter (GM) (mainly, the cortex), white
matter (WM), and cerebrospinal fluid (CSF). A majority of the proposed meth-
ods focus on the cortex, that presents a complex geometry, with strong folding
and a low thickness, leading to a high curvature 2D-like thin ribbon. Cortex
segmentation is generally presented as a binary segmentation problem (cortex
vs. other structures) or a ternary segmentation problem (GM, WM, CSF). The
associated topological hypotheses are often a simplified version of the anatomical
reality, and the different classes of tissues are assumed nested: the central class
is simply connected (i.e. a full sphere) with successively nested hollow spheres.
Based on these simplified assumptions, it is possible to develop segmentation
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strategies from binary digital topology [13], and in particular homotopic trans-
formations based on simple points [8] (less frequently, alternative topological
models were proposed, for instance cellular complexes [7, 9]).

Since the pioneering works proposed in [15], different variants of such topo-
logical deformable models have been proposed, in fully discrete paradigms [5]
or by coupling continuous and digital models [11]. However, the hard topolog-
ical constraints imposed by the model can lead to deadlocks that are difficult
to handle (see [10] for a discussion on that topic). Based on the same topologi-
cal hypotheses, many topology correction methods have been proposed for the
cortex. They mainly consist of identifying the tunnels / handles generated on
the cortical surface, and removing them based on ad hoc strategies [14, 3]. These
methods aim at reformulating the topological problem to be solved by consid-
ering a binary, simply connected topological model, which has the virtue to be
easy to handle, but the drawback of poorly modelling the anatomical structures.

More recently, new ways were explored for tackling the issue of real mul-
tilabel segmentation and/or potentially complex topologies. Handling complex
topology can be done by relying on less constraining—but also less robust—
topological invariants, such as the genus [22]. Homotopic transformations based
on simple points however remain the gold standard for carrying out model trans-
formation. In order to avoid topological deadlocks, non-monotonic transforma-
tion processes of complex, multilabel topological models were investigated [20, 4].
Although promising, these approaches suffer from various theoretical weaknesses
[20, 2, 23] (see [18] for a discussion). They also work at a unique scale, with in-
duced difficulties to ensure simultaneously spatial / geometrical and topological
reliability.

3 Multilabel, Multiscale Topological Modelling

3.1 Theory

In [16], Mazo proposed a framework for modelling the topology of multilabel
digital images. The main ideas of this framework are as follows.

1. The multilabel image is splitted in a collection of binary images such that
each binary image represents a region of interest, that is a region that has
been previously labelled or represents a meaningful union of some labeled
regions. The unions are labeled thanks to a lattice structure: the label of a
union of regions is the supremum of the labels of the regions.

2. Each binary digital image is embeded in a partially ordered set (poset) by
adding intervoxels elements (pointels, linels, surfels). Such elements are as-
signed to the foreground or the background thanks to the minimum (6-
adjacency) or maximum (26-adjacency) membership rule. Doing so, the con-
nected components are preserved and the digital fundamental groups, as
defined by Kong [12], are mapped, through isomorphisms, to the fundamen-
tal groups of the Alexandrov topology [17].
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{α, β, γ}

{α, β} {α, γ} {β, γ}

{α} {β} {γ}

∅

Fig. 1. The power lattice Λ = 2L for the set of labels L = {α, β, γ} of the three
considered classes of cerebral tissues.

In this framework, a homotopic relabelling boils down to a collection of simple
point moves in binary images with the guarantee to preserve the underlying
topological structures of the involved posets, and in particular their homotopy-
types.

3.2 Application

In the applicative context of this work, our purpose is to post-process ternary
classification maps of MR images defined as

∣

∣

∣

∣

F : Ω → [0, 1]3

x 7→ (pCSF, pGM, pWM)
(1)

where Ω is a part of Z3 corresponding to the support of an MR image, and for
each point x, pCSF, pGM and pWM are the probabilities that x belong to the
cerebrospinal fluid, the grey matter (cortex) and the white matter, respectively.
In particular, we have

∑

ℓ pℓ = 1.
Such maps F are obtained by a fuzzy segmentation process described in

[24] (but they may be obtained via any other similar segmentation procedure,
e.g. [6]). A specificity of this segmentation strategy—and many others—despite
its good accuracy from quantitative and geometric points of view, lies in the
fact that it is not guided by topological constraints. As a consequence, its out-
put needs to be post-processed for any further application requiring topological
guarantees (for instance mesh generation or differential cortical surface analysis).

Our purpose is then to build, from F , a new crisp segmentation map

∣

∣

∣

∣

T : Ω → {0, 1}3

x 7→ (cCSF , cGM , cWM )
(2)

such that for each point x, cCSF , cGM and cWM are equal to either 0 or 1
depending on the (unique) class of x, i.e. with

∑

ℓ cℓ = 1.
In addition, T should satisfy—unlike F—some topological priors related to

the structure of the different tissues.
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3.3 Multiscale topological modelling

The framework proposed in [16] allows us to model the topological structure
of the three classes of cerebral tissues of interest, namely CSF, GM and WM,
further noted γ, β and α, respectively, for the sake of concision. It also allows
us to model any combinations of these labels, leading to the whole power lattice
Λ = 2L; see Figure 1.

In particular, in [16], the notion of topology preservation relies on the def-
inition of simple points that preserve the homotopy-type of all the labels of
Λ. However, it is possible to consider the notion of simpleness for only a given
(strict) subset of labels of Λ. In such a case, it is sufficient to guarantee that the
relabelling of a (simple) point fulfills the required topological conditions for the
chosen subset of labels, while the topology of the objects / complexes induced
by the other labels are allowed to evolve.

This strategy, that only focuses on specific (combinations of) labels of inter-
est, permits to define a multiscale topological modelling. Indeed, the notion of
topology in discrete imaging is strongly related to the scale of observation of the
objects of interest. For instance, fine topological details that are relevant at a
high resolution, become useless (and sometimes incorrect) at a coarser resolution,
due to the loss of precision induced by partial volume effects.

Based on this assumption, we consider two distinct topological models of the
brain tissues, according to their scale (see Figure 2):

– Model 1 – Coarse / intermediate scales (S1 and S2): At these scales,
we assume that the WM, GM and CSF are successively nested, which is the
hypothesis currently considered in the literature. In other words, we aim at
preserving the homotopy-type of three labels: {α} (simply connected); {β}
(hollow sphere); and γ (hollow sphere); but also the homotopy-type of their
four combinations.

– Model 2 – intermediate / fine scales (S2 and S3): At these scales, we
assume that the cortex (GM) is no longer a hollow sphere. Indeed, on the
lower part of the encephalus, the hypothesis of GM surrounding WM is not
satisfied (due to the connection of the encephalus to the brainstem). Based on
this hypothesis, we aim at preserving the homotopy-type of five labels: {α}
(simply connected); {α, β} (simply connected); {β, γ} (hollow sphere); {γ}
(hollow sphere); and {α, β, γ} (simply connected). In particular, this allows
to make the topology of the cortex evolve whereas remaining coherent with
respect to its neighbouring structures (CSF and WM).

4 Multilabel, Multiscale Topology-Controlled

Deformation

We now describe how the topological assumptions modeled above can be con-
sidered for designing, at each scale, well-fitted homotopy-type preserving defor-
mation processes.
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{α, β, γ}

{α, β} {α, γ} {β, γ}

{α} {β} {γ}

∅
(a) Model 1: scales 1 & 2

{α, β, γ}

{α, β} {α, γ} {β, γ}

{α} {β} {γ}

∅
(b) Model 2: scales 2 & 3

Fig. 2. Topological modelling of the classes of brain tissues, at the coarse / intermediate
(a) and intermediate / fine scales (b). The labels coloured in red and purple are those for
which the topology has to be preserved. The red labels need to be explicitly handled; the
topology of the purple labels is preserved as a corollary of the topological preservation
of the red ones. The topology of the black labels is authorized to evolve during the
transformation process.

4.1 Grid refinement

We work on a space Ω defined as a subset of Z
3. In order to carry out the

deformation process at each scale, the space Ω has to be adapted to the current
scale. It is important to note that the notion of simple points and homotopy-type
are compliant with respect to digital grid refinement. In other words, a digital
object X defined in Z

3 (and more generally in Z
n) has the same homotopy-type

as its up-sampled analogue X2 in Z
3, defined by x ∈ X2 ⊂ Z

3 ⇔ ⌊x/2⌋ ∈ X.
In addition, x is a simple point for X iff there exists a sequence of successively
simple points for X2 composed from the 8 points of 2x+ {0, 1}3. This topology-
preserving octree refinement [1] remains trivially valid for up-samplings at any
other (discrete) resolution.

In particular, we consider a scale factor k ∈ N, k > 1, between the grids of
each scale. The set Γ1 ⊂ Z

3 is the grid considered at the coarse scale S1. It is
refined, at scale S2 into a second grid Γ2 such that Γ1 = kΓ2, which means that
one point of Γ1 corresponds to k3 points of Γ2. Finally, Γ2 is refined into a third
grid Γ3 such that Γ2 = kΓ3; this means that one point of Γ1 corresponds to k3

points of Γ2 and k6 points of Γ3. Note that we have Ω = Γ3. It is then convenient
to assume (without loss of generality) that Ω is defined as a Cartesian product
∏3

i=1[[0, Ni − 1]] ⊂ Z
3 such that Ni is a multiple of k2 for any i = 1, 2, 3.

4.2 Metrics

In order to guide the topology-controlled transformation process, we need to
define metrics for assessing the error between the current (evolving) segmenta-
tion map and the target segmentation map. In particular, by minimizing a cost
function associated to this error, our purpose is to make our segmentation map
progressively converge onto the target, whereas correctly handling the topology.
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In this context, we consider two metrics. The first is a classification metric,
noted Md, defined by the classification error at each point of the image. The
second, notedM∆, is a distance-based metric, defined by the L1 distance between
the misclassified points and the corresponding, correctly classified region in the
target image.

In order to build these two metrics, we first need to define fuzzy classification
maps Fi from F (see Eq. (1)) at each scale i (i = 1, 2, 3). This is done with a
standard mean policy:

Fi(x) =
1

k3.(3−i)

k(3−i)−1
∑

a=0

k(3−i)−1
∑

b=0

k(3−i)−1
∑

c=0

F (k(3−i)x+ (a, b, c)). (3)

In particular, we have F3 = F .
For a given (crisp) segmentation map C, the first metric Md assessing the

error between C and Fi is then defined as:

Md(C,Fi) =
∑

x

‖C(x)− Fi(x)‖2. (4)

For defining the second metric M∆, we build crisp classification maps Gi

from the fuzzy maps Fi by a standard majority voting process, i.e. for any x, we
set Gi(x) = arg{α,β,γ} maxFi(x)

For a given (crisp) map C, the second metric M∆ assessing the error between
C and Gi is then defined as:

M∆(C,Gi) =
∑

x

∆(x,G−1
i (C(x))) (5)

where ∆(x,X) = miny∈X ‖x − y‖1 is the L1 distance between the point x
and the set X, whereas G−1

i (v) = {x | Gi(x) = v}. In particular, we have
∆(x,G−1

i (C(x))) = 0 iff C(x) = Gi(x).

4.3 Initialization and optimization process

The process is iterative, and proceeds from the coarse scale S1 up to the fine
scale S3. For each step, the current input segmentation map is the output of the
previous step (possibly up-sampled, if we switch between Si and Si+1). The only
explicit initialization is then required for the very first step of the process. At
this stage, we simply consider a three-layer nested sphere model, with a central
simply connected full sphere of label α surrounded by a first hollow sphere of
label β and finally a second hollow sphere of label γ.

At each step of the optimization process, we consider either the metric Md

or M∆. In order to make Md decrease, we build a map that defines, for each
point x and each possible relabelling ℓ1 → ℓ2 (with ℓ1 the current label at x),
the associated benefit with respect to Md, namely ‖ℓ2−Fi(x)‖2−‖ℓ1−Fi(x)‖2.
Then, we iteratively carry out the relabelling of (simple) points with the maximal
(non-negative) benefit, until stability.
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(a) I (b) FWM

(c) FGM (d) F

Fig. 3. (a) MR image. (b) Fuzzy classification of the WM from (a). (c) Fuzzy clas-
sification of the GM from (a). (d) Crisp classification map obtained from the fuzzy
classification maps of (a) (WM in grey; GM in white; CSF + background in black).
(a–d) Sagittal slices.

In order to make M∆ decrease, we build a map that defines, for each point
x and each possible relabelling ℓ1 → ℓ2 (with ℓ1 the current label at x), the
associated benefit with respect to M∆, as ∆(x,G−1

i (ℓ2)) if ∆(x,G−1
i (ℓ2)) <

∆(x,G−1
i (ℓ1)) and 0 otherwise. Then, we iteratively carry out the relabelling of

(simple) points with the maximal benefit, until stability.

5 Experiments and Results

We present some results computed with the proposed method, for topological
correction of fuzzy segmentation maps obtained from the method proposed in
[24] (or equivalent methods). An example of such map F obtained from an MR
image is illustrated in Figure 3.

Here, we carried out a 5 step iterative procedure with the meta-parameters
summarized in Table 1.

The initial images I are defined on Ω = [[0, 291]] × [[0, 291]] × [[0, 203]]. We
use as scale factor k = 2. The successive segmentation maps (and the associated
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Table 1. Meta-parameters for the successive steps of the process.

Step Scale Topology Metric

1 S1 Model 1 M∆

2 S2 Model 1 M∆

3 S2 Model 1 Md

4 S2 Model 2 M∆

5 S3 Model 2 M∆

classification maps F3, F2 and F1) are then defined on Γ3 = [[0, 291]]× [[0, 291]]×
[[0, 203]], Γ2 = [[0, 145]] × [[0, 145]] × [[0, 101]], and Γ1 = [[0, 72]] × [[0, 72]] × [[0, 50]],
respectively, i.e. with |Γ3| ≃ 1, 7.107, |Γ2| ≃ 2, 2.106 and |Γ1| ≃ 2, 7.105.

An example of the successive steps of the topological transformation pro-
cess is illustrated in Figure 4. One can observe the progressive convergence of
the model toward the classification map, whereas controlling the topology of
the segmentation, in particular on the cortex (preserved on the upper part of
the encephalus), whereas the GM is relevantly removed on the lower part, in
accordance with the initial classification map and with the topological model.

A 3D mesh visualization of the resulting map T is illustrated in Figure 5,
qualitatively emphasizing the topological correctness of the result.

6 Conclusion

This preliminary study provides a proof of concept for the relevance of using the
multilabel topological framework proposed in [16] for developing a multiscale,
topological modelling of the cerebral structures, allowing one to either preserve
or relax topological constraints over the power lattice of a set of elementary
semantic labels.

In particular, this framework can be efficiently used for carrying out mul-
tiscale, topology-controled deformation of label maps based on the concept of
simple points, here in the context of topological correction of fuzzy segmentation
maps computed beforehand.

Among numerous perspective works, we will further investigate (1) more
sophisticated metrics for guiding the deformation process; (2) the possibility to
carry out deformation processes at a superpixel resolution and/or to use cubical
complex models [18] for topological modelling; and (3) a richer modelling of the
brain with more anatomical structures, e.g. for atlas-based segmentation.
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Table 1). (e) Final segmentation map. (f) Crisp classification map (see also Figure 3(d))
used as reference for guiding the process.
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Fig. 5. Surface mesh generated from the final topological segmentation map T of Fig-
ure 4(e).
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