On total f-domination: polyhedral and algorithmic results - Archive ouverte HAL
Article Dans Une Revue Discrete Applied Mathematics Année : 2019

On total f-domination: polyhedral and algorithmic results

Résumé

Given a graph G =(V,E) and an integer value f(v) for each node v in V, a node subset D is a total f-dominating set if every node v is adjacent to at least f(v) nodes of D. Given a weight c(v) for each node v, the minimum weight total f-dominating set problem is to find a total f-dominating set of minimum total weight. In this article, we propose a polyhedral study of the associated polytope together with a complete and compact description of the polytope for totally unimodular graphs and cycles. We also propose a linear time dynamic programming algorithm for the case of trees
Fichier principal
Vignette du fichier
S0166218X18306309.pdf (361.58 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01975659 , version 1 (22-10-2021)

Licence

Identifiants

Citer

Mauro Dell'Amico, José Neto. On total f-domination: polyhedral and algorithmic results. Discrete Applied Mathematics, 2019, 258, pp.97 - 104. ⟨10.1016/j.dam.2018.11.021⟩. ⟨hal-01975659⟩
43 Consultations
49 Téléchargements

Altmetric

Partager

More