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Abstract. Given a graph G = (V,E) and integer values fv, v ∈ V , a node subset D ⊂ V is a total

f -dominating set if every node v ∈ V is adjacent to at least fv nodes of D. Given a weight system

c(v), v ∈ V , the minimum weight total f -dominating set problem is to find a total f -dominating set

of minimum total weight. In this article, we propose a polyhedral study of the associated polytope

together with a complete and compact description of the polytope for totally unimodular graphs

and cycles. We also propose a linear time dynamic programming algorithm for the case of trees.

Keywords: total domination, polytope, tree, linear-time algorithm

1 Introduction

Let G = (V,E) denote a simple graph having node set V = J1, nK and edge set E, where J1, nK stands

for the set of integers {1, 2, . . . , n}. For each v ∈ V , let dv denote its degree in G and let fv be a

given nonnegative integer value. Let FG stand for the set of vectors {f ∈ Zn+ : 0 ≤ fv ≤ dv, ∀v ∈ V }.

A node subset D ⊆ V is called an f-dominating set (resp. a total f-dominating set) if each node

v ∈ V \D (resp. v ∈ V ) has at least fv neighbor(s) in D. In the special case fv = 1, for all v ∈ V , node

set D is called a dominating set (resp. a total dominating set), see [13,14] and [17]. We consider then

the minimum weight total f-dominating set problem, denoted by [MWTf ]: Given a simple graph

G = (V,E) with node weights cv ∈ R, for all v ∈ V , and f ∈ FG, find a minimum weight total

f -dominating set of G, i.e. find a node subset D ⊆ V such that D is a total f -dominating set and
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the weight of D:
∑
v∈D cv, is minimum. This problem may be formulated as the integer program

(IP )

min
∑
v∈V

cvxv :
∑

u∈N(v)

xu ≥ fv,∀v ∈ V ; x ∈ {0, 1}n
 ,

where N(v) = {u : [u, v] ∈ E} denotes the neighboring nodes of v. Its linear relaxation (obtained

replacing the constraints x ∈ {0, 1}n by x ∈ [0, 1]n) will be denoted by (P ). Given a node subset

S ⊆ V , let χS ∈ {0, 1}n denote its incidence vector: χSv = 1 if v ∈ S, and χSv = 0 otherwise. Let T fG
denote the total f -dominating set polytope, i.e. the convex hull of all the incidence vectors of the

total f -dominating sets in G. Then, problem [MWTf ] can be reformulated as the linear program:

min{ctx : x ∈ T fG}.

Optimization problems involving dominating sets and some of their many variants arise in several

important applications, in particular for the strategic placement of resources in network infras-

tructures (see e.g. [13,14]). Consider a graph whose node set corresponds to locations where some

resource (energy, data, . . . ) can be made available at some cost, and whose edges represent connec-

tions allowing the distribution of this resource between pairs of locations. Then, an optimal solution

to [MWTf ] may be interpreted as a set of locations where the resource is made available so that

each location v can get it from at least fv neighboring places and the total cost for locating the

resource is minimized. For information on domination and many of its variants, the reader may

consult both books by Haynes et al. [13,14], and for total domination we may refer to the survey

by Henning [15] and to the book by Henning and Yeo [17]. Many works on total domination focus

on finding the minimum cardinality of a total dominating set in a given graph G = (V,E), i.e. the

case fv = cv = 1, for all v ∈ V .

Let [DT] (resp. [DD]) stand for the decision problem associated with the minimum cardinality total

dominating set problem (resp. the minimum cardinality dominating set problem). [DD] was shown

to be NP-complete [12] for undirected path graphs in [5] using a reduction from the 3-dimensional

matching problem. A variation of this reduction was used in [22] to prove the same result holds for

[DT ]. Further graph classes for which [DT] is known to be NP-complete include, e.g., split (and thus

also chordal) graphs [21], line graphs of bipartite graphs [23] and circle graphs [18]. Connections

between [DD] and [DT] are investigated in [20] which presents a linear time many-one reduction

from [DT] to [DD]. This transformation allows the derivation of complexity results for one of the two

decision problems from complexity results on the other for some particular graph families (closed

for the graph transformation that is introduced there), among which the fact that the minimum

cardinality total dominating set problem can be solved in polynomial time in permutation graphs,

dually chordal graphs and k-polygon graphs. Laskar et al. [22] gave the first linear time algorithm to
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find a minimum cardinality total dominating set in a tree. Their greedy algorithm uses a particular

node labeling and iteratively processes a leave and removes it from the current tree, which is

initialized with the input graph. In this paper, we extend their result by showing [MWTf ] can be

solved in linear time for trees (see Proposition 11). Other graph classes for which the minimum

cardinality total dominating set problem can be solved in polynomial time include strongly chordal

graphs [7] and cocomparability graphs [19]. In [3] a O(n logn) algorithm is presented for solving the

minimum weight total dominating set problem in interval graphs. A notable graph family for which

the complexity status of the problem [DD] differs from the one of [DT] is that of chordal bipartite

graphs: when restricted to this graph family [DD] is NP-complete whereas [DT] can be solved in

polynomial time [10].

Let γt(G) (resp. γt,f (G)) denote the minimum cardinality of a total dominating set (resp. total f -

dominating set) in a graph G = (V,E). Given the complexity of the problem for computing γt(G),

some works focused on getting bounds. Lower and upper bounds on γt(G) appear in [8,17]. To the

best of the authors’ knowledge, a lower bound on γt,f (G) only appears in [27], while the upper

bound 6n
7

is reported in [16] for the particular case fv = 2, for all v ∈ V .

The polyhedral structures of polytopes related to domination problems seem to have received lit-

tle attention. With respect to the classical domination concept relevant works on such aspects are

namely [6,11]. Let DG denote the dominating set polytope, i.e. the convex hull of the incidence vec-

tors of the dominating sets in G. Farber’s work [11] gives a complete description of DG for strongly

chordal graphs, while Bouchakour and Mahjoub’s paper [6] provides properties and characteriza-

tions of facet-defining inequalities, and also presents a peculiar decomposition result which may be

formulated as follows. If G = (V,E) is the 1-sum of the graphs G1 = (V1, E1) and G2 = (V2, E2)

(i.e. V = V1 ∪ V2, E = E1 ∪ E2 and |V1 ∩ V2| = 1), then a complete formulation of DG can be

deduced from the ones of DG1 and DG2 . We proceed to similar investigations w.r.t. T Gf , which, to

our knowledge, do not appear elsewhere in the literature.

The paper is organized as follows. In Section 2, we present basic polyhedral results on T fG . In

Section 3, we prove that if the graph G has an articulation point u whose degree equals the number

of connected components of the graph induced by V \ {u}, then an extended formulation of T fG
can be obtained from complete formulations related to these components. In Section 4, complete

formulations of T fG for some special graph families are given, namely: totally unimodular graphs

and cycles. Then, in Section 5, a linear time dynamic programming algorithm to solve [MWTf ] for

trees is presented, before we conclude in Section 6.
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2 Basic polyhedral results on T f
G

Let G = (V,E) denote a simple undirected graph, and let f ∈ FG such that fv < dv, for all v ∈ V .

In this section we give basic polyhedral properties like dimension and facet-defining inequalities of

T fG .

Proposition 1. The following statements hold.

(i) The polytope T fG has dimension n, i.e. it is full dimensional.

(ii) The trivial inequality xv ≥ 0 is facet-defining for T fG if and only if fw < dw−1, for all w ∈ N(v)

such that dw ≥ 2.

(iii) The inequality xv ≤ 1 is facet-defining for T fG , for all v ∈ V .

Proof. Result (i) follows from the affine independence of the incidence vectors of the following total

f -dominating sets: V and V \ {v}, for all v ∈ V . Statement (iii) can be deduced from the affine

independence of the incidence vectors of the sets: V and V \{w}, for all w ∈ V \{v}. We now prove

(ii). Let Fαu = T fG ∩ {x ∈ Rn : xu = α} for u ∈ V , α ∈ {0, 1}.

[⇒] In case fw = dw − 1 for some w ∈ N(v) with dw ≥ 2, then necessarily F 0
v ⊂ ∩u∈N(w)\{v}F

1
u ,

thus the inequality xv ≥ 0 cannot define a facet of T fG .

[⇐] The incidence vectors of the n total f -dominating sets: V \{v} and V \{v, w}, for all w ∈ V \{v}

are affinely independent and they all belong to F 0
v . ut

In what follows, given a node subset S ⊆ V , its open neighborhood is the set N(S) = {v ∈ V \S : ∃u ∈

S such that [u, v] ∈ E}, and its closed neighborhood is the set N [S] = N(S) ∪ S.

We now provide a simple sufficient condition for an inequality∑
z∈N(v)

xz ≥ fv (1)

of (P ) to be facet-defining (where v ∈ V ).

Proposition 2. Let u ∈ V such that fu ≥ 1, and assume that |N(w)\N [u]| ≥ fw, for all w ∈ N(u),

and |N(w) \N [u]| > fw, for all w ∈ V \N [u]. Then the inequality (1) (with u taking the role of v

in this expression) is facet-defining for T fG .

Proof. Assume that all the mentioned conditions are satisfied. Let F denote the face of T fG induced

by (1) and assume that F is contained in a facet F of T fG that is defined by the inequality atx ≥ b,

with (a, b) ∈ (Rn\{0}×R). We prove that atx ≥ b corresponds to inequality (1), up to multiplication

by a positive scalar.
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Let S ⊂ N(u) such that |S| = fu. Since the node subsets (V \ N [u]) ∪ S and (V \ N(u)) ∪ S are

total f -dominating sets whose incidence vectors satisfy (1) with equality, we deduce au = 0.

Let w ∈ V \ N [u] and let S ⊂ N(u) such that |S| = fu. Since the node sets (V \ N [u]) ∪ S and

((V \ N(u)) ∪ S) \ {w} are total f -dominating sets, both satisfying (1) with equality we deduce

aw = 0.

We now show av = az, for all (v, z) ∈ N(u)2. Let S ⊂ N(u) such that |S| = fu. Let (v, z) ∈ S ×

(N(u)\S). Then the incidence vectors of the node subsets (V \N [u])∪S and (V \N [u])∪(S∪{z})\{v}

both satisfy (1) with equality. We deduce: av = az.

It follows that the inequality atx ≥ b must correspond, up to multiplication by a positive scalar, to

inequality (1). ut

Remark 1. The conditions of Proposition 2 are not necessary for (1) to be facet-defining, and it

remains open whether one can formulate a simple characterization. Nontrivial relations may be

induced by inequalities of the form (1) related to other nodes than u and whose neighborhood

intersects N(u). A simple necessary condition (still assuming fu ≥ 1), but that is not sufficient, is

given by: fw < fu + |N(w) \N(u)| if N(w) 6= N(u), and fw ≤ fu otherwise, for all w ∈ V \ {u}.

3 Decomposition results

In this section we provide results that allow us, in some cases, to decompose the search for a

formulation of T fG into several such searches but on graphs having smaller order.

We start by introducing some simple auxiliary properties. Firstly, we show that when there exists a

node for which the domination requirement equals its degree, in order to get a complete formulation

of T fG , we can easily reduce the situation to the case when fv < dv, for all v ∈ V .

Proposition 3. Let f ∈ FG and assume there exists some node v ∈ V such that fv = dv. Define

f ′ ∈ FG as follows: f ′w = fw, for all w ∈ V \ {v} and f ′v = 0. Then, a complete formulation of T fG
can be obtained by adding to a complete formulation of T f

′

G the set of equations {xu = 1: u ∈ N(v)}.

Proof. Let Q denote the polytope defined by a complete formulation of T f
′

G with the set of equations

{xu = 1: u ∈ N(v)} added. Note that Q is a face of T f
′

G contained in T fG , and since any point of

T fG satisfies the system defining Q, we deduce Q = T fG . ut

The next auxiliary result shows that edges whose endpoints have zero domination requirements can

be ignored when looking for a complete formulation of T fG .
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Proposition 4. Let G = (V,E) denote an undirected graph, and let f ∈ FG be such that fu = fv =

0 for some edge [u, v] ∈ E. Let G′ = (V,E \ [u, v]) denote the graph obtained from G by deleting

edge [u, v]. Then T fG = T fG′ .

Trivially, if the graph G is not connected, then a complete formulation of T fG is obtained by aggre-

gating the complete formulations corresponding to its connected components. So, in what follows,

we can assume w.l.o.g. that G is connected. Given a graph G = (V,E) and a node subset S ⊆ V ,

let G[S] denote the subgraph of G that is induced by S, i.e. G[S] = (S,E′), where E′ stands for the

subset of edges in E having both endpoints in S.

Proposition 5. Let G = (V,E) be an undirected graph, f ∈ FG, and assume that, for some node

u ∈ V , the following holds: fu = du and fv ≤ |N(v) ∩ N(u)|, for all v ∈ N(u). Let G̃ = (Ṽ , Ẽ) =

G[V \ N [u]] and let f̃v = fv, for all v ∈ Ṽ \ S and f̃v = fv − |N(v) ∩ N(u)|, for all v ∈ S with

S = N(N [u]). Then, a complete description of T fG is obtained by adding to a complete description

of T f̃
G̃

the equations xv = 1, for all v ∈ N(u) and the trivial inequalities 0 ≤ xu ≤ 1.

Proof. Let Q ⊂ RV denote the polytope whose complete formulation is obtained from that of T f̃
G̃

,

adding the equations xv = 1, for all v ∈ N(u) and the trivial inequalities 0 ≤ xu ≤ 1.

Note that the restriction to the nodes in Ṽ of any total f -dominating set in G is a total f̃ -dominating

set in G̃. Thus, all the incidence vectors of total f -dominating sets in G satisfy all the constraints

defining Q and we have: T fG ⊆ Q.

We now show Q ⊆ T fG . For, let y ∈ Q denote an extreme point of Q. Remark that since the variable

xu occurs only in the trivial inequalities in the description of Q, necessarily: yu ∈ {0, 1}. Let ỹ ∈ RṼ

denote the restriction of y to its entries in Ṽ . Then, ỹ ∈ T f̃
G̃

and it can be expressed as a convex

combination of incidence vectors of total f̃ -dominating sets in G̃: ỹ =
∑q
j=1 λjz

j , with q a positive

integer, λj ≥ 0, for all j,
∑
j λj = 1, and where zj denotes an extreme point of T f̃

G̃
.

Now, for each j ∈ J1, qK, define ẑj ∈ RV as follows: (ẑj)v = (zj)v, for all v ∈ Ṽ , (ẑj)v = 1, for

all v ∈ N(u) and (ẑj)u = yu. Note that for each j ∈ J1, qK, ẑj is the incidence vector of a total

f -dominating set in G, and we have y =
∑q
j=1 λj ẑ

j . Thus y ∈ T fG . ut

The next result holds for the case when the node u used for decomposition is such that the number

of connected components in G[V \ {u}] equals du.

Proposition 6. Let G = (V,E) be an undirected graph, f ∈ FG, such that fv < dv, for all v ∈ V .

Consider some node u ∈ V , let C1, C2, . . . , Cp denote all the different connected components of

G[V \ {u}] and assume that |Ci ∩ N(u)| = 1, for all i ∈ J1, pK (i.e. all the neighbors of u belong
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to different connected components of G[V \ {u}]). For each i ∈ J1, pK, let Ci = (Vi, Ei), define

Ĉi = G[Vi ∪ {u}] = (V̂i, Êi) and f̂ i ∈ FĈi
such that (f̂ i)w = fw, for all w ∈ Vi and (f̂ i)u = 0.

Then, for any δ ∈ {0, 1}, the polytope Qδ defined by the aggregation of complete formulations of

the polytopes T f̂
i

Ĉi
for i = 1, 2, . . . , p, together with the constraints

∑
v∈N(u) xv ≥ fu and xu = δ is

integral.

Proof. We do the proof for δ = 0 (the case δ = 1 can be treated similarly). Let F 0 denote the face

of T fG that is defined by xu ≥ 0: F 0 = T fG ∩{x ∈ Rn : xu = 0}. Since all the incidence vectors of the

total f -dominating sets in G not containing u satisfy the constraints defining Q0, we have F 0 ⊆ Q0.

We now show Q0 ⊆ F 0.

Given any extreme point y of Q0, for each i ∈ J1, pK, let yi ∈ RV̂i denote the restriction of y to its

components corresponding to V̂i. From the definition of Q0 we have yi ∈ T f̂
i

Ĉi
. This namely implies

the existence of positive coefficients (λij)
ri
j=1, for some positive integer ri such that

∑ri
j=1 λ

i
j = 1

and yi =
∑ri
j=1 λ

i
jz
i,j , where for each j ∈ J1, riK, zi,j denotes the incidence vector in R|V̂i| of a

total f̂ i-dominating set in Ĉi. We now prove that y can be expressed as a convex combination of

incidence vectors of total f -dominating sets in G. Q0 is a rational polyhedron, all the entries of y

are rational and we can assume all the coefficients λij above are rational. For our purposes, we shall

now express all the coefficients λij using a common denominator, i.e. under the form λij =
αi
j

D
, where

αij is a positive integer for all i, j and D is a positive integer. Consider a partition of the interval

[0, 1] into subintervals of equal length 1
D

: Ik = [ k−1
D
, k
D

[ for k ∈ J1, D − 1K and ID = [D−1
D

, 1]. For

each k ∈ J1, DK and each i ∈ J1, pK, our objective is now to determine a total f̂ i-dominating set

of Ĉi, denoted Sik, that we will associate with the interval Ik and such that the following three

properties, denoted by (PROPER1), hold.

1. The incidence vector of Sik corresponds to one of the vectors zi,j that is associated with a

positive αij in the expression of yi. Let  ∈ J1, riK denote this index value.

2. The total number of intervals among (Iq)
D
q=1 that are associated with Sik equals αi.

3. For each k ∈ J1, DK, |(∪pi=1S
i
k) ∩N(u)| ≥ fu, i.e. ∪pi=1S

i
k is a total f -dominating set in G.

The sum divided by D of the incidence vectors of the sets (∪pi=1S
i
k)1≤k≤D coincides with the point

y ∈ Q0. It remains to show that such sets (Sik) 1≤i≤p
1≤k≤D

do exist.

Consider the auxiliary directed and arc-capacitated graph H = ({s} ∪ VH ∪ LH ∪ {t}, EH) which

we define as follows. The node set is composed of

– s: a source node,

– t: a target (or destination) node,
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– a set VH containing a node vi for each i ∈ J1, pK, representing the total f̂ i-dominating sets that

contain a neighbor of u and that are associated with a positive coefficient in the expression of

yi above,

– a set LH containing a node lk for each interval Ik, k ∈ J1, DK.

The set EH is composed of the arcs:

– (s, vi) with capacity Dyiw(i), for all i ∈ J1, pK, where w(i) stands for the unique neighbor of u

in Ĉi,

– (vi, lk) with capacity 1, for all i ∈ J1, pK, for all k ∈ J1, DK,

– (lk, t) with capacity fu, for all k ∈ J1, DK.

Claim. There exist sets (Sik) 1≤i≤p
1≤k≤D

satisfying (PROPER1) if and only if there exists an integral

feasible flow in H with value Dfu.

Proof of the claim. [⇒] Let (Sik) 1≤i≤p
1≤k≤D

denote sets satisfying (PROPER1). Starting from a zero

flow, we iteratively build a flow in H that will have value Dfu. For each k ∈ J1, DK, we arbitrarily se-

lect exactly fu sets among {Sik : 1 ≤ i ≤ p and Sik∩N(u) 6= ∅}. Let vk,l ∈ VH , l = 1, 2, . . . , fu denote

the corresponding nodes. We sequentially increase by one unit the flow on the paths (s, vk,l, lk, t),

for l = 1, 2, . . . , fu.

[⇐] Given an integral feasible flow in H with value Dfu, we consider, for each k ∈ J1, DK the set of

the edges Uk = {(v, lk) ∈ EH : flow value on (v, lk) is 1} which has cardinality fu (by the construc-

tion of H and since the flow has value Dfu). For each edge of the form (vi, lk) ∈ Uk, we associate a

total f̂ i-dominating set of Ĉi that corresponds to a vector of the form zi,j and containing a neigh-

bor of u (that will be assigned to Sik). This is done such that each such total f̂ i-dominating set is

associated with at most αij arcs in ∪Dk=1Uk.

For each k ∈ J1, DK, there are exactly fu sets of the form (Sik)1≤i≤p that have been assigned and

each one of them corresponds to some total f̂ i-dominating set of Ĉi containing a neighbor of u ; so

that the third condition in (PROPER1) is satisfied by this partial assignment. For each i ∈ J1, pK

we can then assign (order is arbitrary, we just have to take care of the number of times some set

occurs) total f̂ i-dominating set of Ĉi to unassigned sets of the form (Sik)1≤k≤D such that each total

f̂ i-dominating set of Ĉi that is associated with zi,j in the expression of yi is represented exactly αij

times among the sets (Sik)1≤k≤D. ut

To conclude the proof of Proposition 6, we now prove that a flow as mentioned in the Claim above

does exist, by showing the minimum cut value of H is Dfu.
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Given a node subset S ⊆ {s} ∪ VH ∪ LH , let c(δ(S)) denote the capacity of the s-t cut defined by

S, i.e. the sum of the capacities of the arcs of the form (a, b) ∈ EH such that a ∈ S, b /∈ S. Let r

denote the number of nodes of VH which are contained in S. We may consider two cases:

– Case r ≥ fu: If some node of the form lk does not belong to S, then adding such a node to S

we obtain a cut with capacity c(δ(S ∪ {lk})) = c(δ(S)) + fu − r ≤ c(δ(S)).

– Case r < fu: If some node of the form lk belongs to S, then removing such a node from S we

obtain a cut with capacity c(δ(S \ {lk})) = c(δ(S)) + r − fu < c(δ(S)).

From the former, we deduce there exists a minimum capacity s-t cut δ(S) satisfying S ∩ LH ∈

{∅, LH}. Let S ⊆ {s} ∪ VH define a s-t cut. If S contains a node of the form vi, then removing

this node from S we obtain a cut with capacity c(δ(S \ {vi})) = c(δ(S)) −D + Dyiw(i) ≤ c(δ(S)).

It follows that the minimum s-t cut not containing LH is given by S = {s} and the corresponding

capacity is
∑p
i=1Dy

i
w(i) =

∑
v∈N(u)Dyv ≥ Dfu. For any s-t cut δ(S) with S containing LH we

have c(δ(S)) ≥ Dfu, since the cut δ(S) contains all the arcs of the form (lk, t). This leads to the

result that the minimum cut value in H is Dfu. ut

If the conditions for its application are satisfied, Proposition 6 together with Balas’ result [2] al-

lows the derivation of an extended formulation of T fG from complete formulations related to the

components (Ĉi)
p
i=1.

Proposition 7. In the setting of Proposition 6, T fG is the projection onto the x-space of variables

of the polytope defined by the following system.

Aiyk,i ≥ λkbi, ∀i ∈ J1, pK, ∀k ∈ J1, 2K,∑
v∈N(u) y

k
v ≥ λkfu, ∀k ∈ J1, 2K,

y1u = 0, y2u = λ2, λ1 + λ2 = 1,

x = y1 + y2,

(x, y1, y2) ∈ (RV )3, λ ∈ R2
+,

where yk,i ∈ RV̂i denotes the restriction of yk to the entries indexed on V̂i, and such that T f̂i
Ĉi

=

{z ∈ RV̂i : Aiz ≥ bi}, for all i ∈ J1, pK.

In the more particular case when, in addition to the setting of Proposition 6, we also have fv = 0,

for all v ∈ N(u), then a complete formulation of T fG in the original space of variables can be easily

determined. The proof is similar to the one of Proposition 6, and thus omitted.

Proposition 8. In the setting of Proposition 6, assume in addition that fv = 0, for all v ∈ N(u).

For each i ∈ J1, pK, let f i stand for the restriction of f to its entries indexed by Vi. Then, a

complete formulation of T fG is given by the aggregation of complete formulations of the polytopes

T f
i

Ci
for i = 1, 2, . . . , p, together with the constraints

∑
v∈N(u) xv ≥ fu, 0 ≤ xu ≤ 1.
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4 Complete formulations of T f
G for some special graph families

In this section we characterize the graphs for which the trivial and neighborhood inequalities give

a complete formulation of T fG for all f ∈ FG, and then we provide complete formulations for cycles.

Given a graph G = (V,E), its adjacency matrix is the matrix A ∈ {0, 1}n×n satisfying Auv = 1 if

and only if [u, v] ∈ E. A graph is said to be totally unimodular [1] if its adjacency matrix is totally

unimodular. Given f ∈ FG, let P (f) denote the polytope corresponding to the feasible region of (P ),

i.e. P (f) = {x ∈ Rn : Ax ≥ f and x ∈ [0, 1]n}, where A ∈ {0, 1}n×n stands for the adjacency matrix

of G. The next proposition characterizes the graphs for which P (f) is integral for all f ∈ FG. Its

proof is similar to the one given in [26] on a characterization of totally unimodular 0,±1 matrices,

and thus omitted.

Proposition 9. The polytope P (f) is integral for all f ∈ FG if and only if G is totally unimodular.

We now provide a complete description of T fG , when G is a cycle, for any f ∈ {0, 1}V .

Proposition 10. Let G = (V,E) denote a cycle with node set V = J0, n−1K, edge set E = {[i, i+1

mod n] : i ∈ V }, and let f ∈ {0, 1}V . Then, a complete description of T fG is given by the system

(Sodd) (resp. (Seven)) if n is odd (resp. even) with:

(Sodd)



∑
v∈V xv ≥ d

n
2
eminv∈V fv,∑

u∈N(v) xu ≥ fv, ∀v ∈ V,

x ∈ [0, 1]n,

and (Seven)



∑n
2
−1

k=0 x2k ≥ dn4 emink∈J0,n
2
−1K f2k+1,∑n

2
−1

k=0 x2k+1 ≥ dn4 emink∈J0,n
2
−1K f2k,∑

u∈N(v) xu ≥ fv, ∀v ∈ V,

x ∈ [0, 1]n.

Proof. Note that by Proposition 1, the polytope T fG is full dimensional. Let Q denote the polytope

defined by Sodd if n is odd and Seven otherwise. Trivially, T fG ⊆ Q and any integer vector in Q is

the incidence vector of a total f -dominating set. Consider firstly the case n is odd. We distinguish

between two cases.

– Case 1: there exists u ∈ V such that fu = 0. W.l.o.g. assume that u = n − 1. Let A ∈

{0, 1}(n−1)×n denote the restriction of the adjacency matrix to the rows indexed by V ′ =

V \ {n− 1}. Note that Q = {x ∈ [0, 1]n : Ax ≥ f ′}, where f ′ denotes the restriction of f to its

first n−1 components. We define a partition (B, V ′\B) of V ′ with B = ∪
n−1
4
−1

i=0 ({4i}∪{4i+1}),

if |V ′| mod 4 = 0 and B = ∪b
n−1
4
c

i=0 {4i + 1}) ∪ (∪b
n−1
4
c−1

i=0 {4i + 2}), otherwise. Each column

with index in V \{n−2, 0} has exactly two nonzero entries, one of which belongs to a row with

index in B and the other to a row with index in V ′ \ B. The column corresponding to node

10



0 (resp. n − 2) has exactly one nonzero entry which belongs to a row with index in B (resp.

V ′ \ B). This implies (see Corollary 2.8 in [24]) that the matrix A is totally unimodular, and

thus that Q is integral.

– Case 2: fv = 1, for all v ∈ V . Let atx ≥ b denote a facet-defining inequality for T fG that is

not trivial (i.e., different from xv ≥ 0, xv ≤ 1, v ∈ V ) and different from an inequality (1).

Necessarily, (this can be easily shown for any such facet) (a, b) ∈ (Rn+ \ {0}) × (R+ \ {0}).

Let v(1) ∈ V such that av(1) = max(av : v ∈ V and v odd). Let {v(0), v(1), v(2), v(3)} denote

a sequence of consecutive nodes on the cycle containing v(1) in second position. Let S ⊆ V

denote a total 1-dominating set in G such that atχS = b and N(v(0)) ⊆ S, where 1 stands for

the n-dimensional all-ones vector. (The existence of such a set follows from our assumptions on

the constraint atx ≥ b: if such a set S would not exist, then the face defined by the inequality

atx ≥ b would be contained in the one defined by
∑
v∈N(v(0)) xv ≥ 1). We may then consider

two subcases.

• Case 2.1: v(0) /∈ S. Then, v(2) ∈ S. If v(3) ∈ S then, necessarily, av(1) = 0 (because

S \ {v(1)} is also a total 1-dominating set), thus implying av = 0 for all odd v ∈ V , from

the definition of v(1). Now, for the case v(3) /∈ S, since (S ∪ {v(3)}) \ {v(1)} is a total

1-dominating set in G, we deduce av(3) ≥ av(1).

• Case 2.2: v(0) ∈ S. If we had v(3) ∈ S, then S \ {v(1)} would be a total 1-dominating

set, thus leading to av = 0 for all odd v ∈ V . For the case when v(3) /∈ S and since

(S ∪ {v(3)}) \ {v(1)} is a total 1-dominating set we deduce av(3) ≥ av(1).
In both subcases, we can deduce av(1) = av(3). Since n is odd, applying iteratively the former

reasoning leads to av = α, for all v ∈ V for some scalar α > 0. And thus the constraint atx ≥ b

corresponds, up to multiplication by a positive scalar to the constraint
∑
v∈V xv ≥ d

n
2
e.

If n is even, let Q1 (resp. Q2) denote the projection of Q onto the space of the variables having an

odd (resp. even) index. Note that Q corresponds to the Cartesian product of polytopes Q1×Q2, up

to permutation of the variable indices. Let A′ ∈ {0, 1}
n
2
×n

2 be the matrix whose rows and columns

are indexed by J0, n
2
−1K and such that A′ij = 1 ⇐⇒ (2j+1) ∈ N(2i). Observe that A′ is the inci-

dence matrix of a cycle having n
2

nodes and Q1 =
{
z ∈ [0, 1]

n
2 :

∑n
2
−1

k=0 zk ≥ dn4 emink∈J0,n
2
−1K f

′
k

and A′z ≥ f ′
}

, with f ′ ∈ {0, 1}
n
2 such that f ′k = f2k, for all k ∈ J0, n

2
− 1K (variable zk in Q1

corresponds to x2k+1 in Q). If n
2

is even, the first inequality in the formulation of Q1 above is

redundant, A′ is balanced and by Theorem 6.13 in [9], Q1 is integral. If n
2

is odd and there exists

some node u with an even index such that fu = 0, then the matrix obtained from A′ by removing

the u
2

th row is balanced and it follows that Q1 is integral. For the remaining case when n
2

is odd

and fv = 1, for all v ∈ V , the integrality of Q1 can be deduced from the fact that A′ is near-perfect
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(see [25]). The same approach can be used to prove the integrality of Q2, thus implying that Q is

integral and T fG = Q. ut

5 The minimum weight total f-dominating set problem in trees

We now present a dynamic programming algorithm for the problem [MWTf ] for the particular case

when G is a tree. Select an arbitrary node of the graph that will be considered as the root of the

tree. The nodes are numbered in a breadth first search order with integer values in the set J1, nK,

the root node being numbered with value 1. Given some node v ∈ V , let Tv denote the subtree with

root v. For each node v ∈ V \ {1} we define four values which give the contribution of Tv to the

solution of [MWTf ] with additional restrictions, and will allow us to calculate the optimal solution.

For the case when the added restrictions imply that no solution exists, by convention, we consider

its value to be +∞. The set of all the children of node v (i.e. neighbors of v associated with a larger

integer value) is denoted by Fv. We now describe the four considered values.

• CID(v): the contribution of the nodes in Tv to the cost of an optimal solution of [MWTf ] with

the following restriction: node v belongs to the total f -dominating set and it is dominated by

(at least) fv of its children.

• CIU(v): the contribution of the nodes in Tv to the cost of an optimal solution of [MWTf ]

with the following restriction: node v belongs to the total f -dominating set and it is dominated

by (at least) fv − 1 of its children. (Note that we always have CIU(v) ≤ CID(v) since the

domination requirement on the node v for the subproblem corresponding to CID(v) is higher

than that for the subproblem corresponding to CIU(v).)

• COD(v): the contribution of the nodes in Tv to the cost of an optimal solution of [MWTf ]

with the following restriction: node v does not belong to the total f -dominating set and it is

dominated by (at least) fv of its children.

• COU(v): the contribution of the nodes in Tv to the cost of an optimal solution of [MWTf ]

with the following restriction: node v does not belong to the total f -dominating set and it is

dominated by (at least) fv − 1 of its children.

Formulas relating these values associated with some node v ∈ V \ {1} and the ones associated with

its children are as follows.

CID(v) = cv + minJ⊆Fv :
|J|=fv

∑
j∈J CIU(j) +

∑
j∈Fv\J min(CIU(j), COU(j))

CIU(v) = cv + min J⊆Fv :
|J|=fv−1

∑
j∈J CIU(j) +

∑
j∈Fv\J min(CIU(j), COU(j))
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COD(v) = minJ⊆Fv :
|J|=fv

∑
j∈J CID(j) +

∑
j∈Fv\J min(CID(j), COD(j))

COU(v) = min J⊆Fv :
|J|=fv−1

∑
j∈J CID(j) +

∑
j∈Fv\J min(CID(j), COD(j))

For the root node (i.e. the node with number 1) we just consider the values CID(1) and COD(1),

the minimum of which gives the optimal objective value of [MWTf ]. The values CID(v), CIU(v),

COD(v) and COU(v) are determined using a “bottom-up” approach (i.e. for decreasing v from n to

2). Then, CID(1) and COD(1) are computed, leading to the optimal objective value of [MWTf ].

Finally, by tracking back the calculations already performed, an optimal solution to [MWTf ] is

determined.

The next lemma shows that, for each node v ∈ V , computing the four values CID(v), CIU(v),

COD(v), COU(v), assuming those of all its children are available, can be done efficiently. This

leads to the fact that solving [MWTf ] on trees can be done done in linear time, thus extending the

results by Laskar et al. [22] who gave the first linear time (greedy) algorithm to solve the minimum

cardinality total dominating set in trees.

Lemma 1. For each node v ∈ V , if the values CID(u), CIU(u), COD(u) and COU(u) are avail-

able for each children u of v, then any of the four values CID(v), CIU(v), COD(v) or COU(v)

can be computed in time O(Hv), where Hv denotes the number of children of v.

Proof. Consider the following problem denoted by Ph, where h stands for a positive integer, and that

gives a common framework for computing the quantities CID(v), CIU(v), COD(v) and COU(v).

Assume that we are given h items, each of which is associated with two real numbers: item i is

associated with the values ai and bi. Let k < h denote some given integer. The objective is then to

determine a subset J ⊂ J1, hK such that |J | = k and the following quantity is minimized (over all

such sets):

ZJ =
∑
i∈J

ai +
∑

i∈J1,hK\J

min(ai, bi).

Let Q denote the subset of the k indices in J1, hK corresponding to the k smallest quantities among

{ai − bi : i ∈ J1, hK}. Formally, Q = argminJ{
∑
j∈J (ai − bi) : J ⊆ J1, hK and |J | = k}.

Claim. The set Q defines an optimal solution of Ph.

Proof of the claim. Firstly, note that if |{i : bi < ai}| ≤ h − k, then the result is trivial. So,

assume that there are at least h − k + 1 items satisfying bi < ai. Then, in any optimal solution

J∗ of Pn the following holds: bi < ai, for all i ∈ J1, hK \ J∗. Now, let AQ =
∑
i∈J1,hK\Q (ai − bi),
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AJ∗ =
∑
i∈J1,hK\J∗ (ai − bi). Then,

∑h
i=1 ai = ZJ∗ + AJ∗ = ZQ + AQ. And since by construction

AQ ≥ AJ∗ , we deduce ZQ ≤ ZJ∗ and the statement of the claim follows. ut

Since determing the k smallest of h elements can be done in time O(h), problem Ph can be solved

in time O(h) (see, e.g., [4]). Then, identifying h with |Hv| and k with fv (or fv − 1 depending on

the quantity to be computed), the result follows. ut

Proposition 11. Problem [MWTf ] can be solved in time O(n) for trees.

6 Conclusion

In this paper, we presented compact and complete descriptions of the total f -dominating set poly-

tope T fG for totally unimodular graphs and cycles. A linear-time dynamic programming algorithm

solving the minimum weight total f -dominating set problem in trees was also described. Further

research work may be directed towards the polyhedral structure of T fG for other graph families such

as cacti and (strongly) chordal graphs.
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