Stochastic phase field $\alpha$-Navier-Stokes vesicle-fluid interaction model. - Archive ouverte HAL
Article Dans Une Revue Journal of Mathematical Analysis and Applications Année : 2021

Stochastic phase field $\alpha$-Navier-Stokes vesicle-fluid interaction model.

Résumé

We consider a stochastic perturbation of the phase field alpha-Navier-Stokes model with vesicle-fluid interaction. It consists in a system of nonlinear evolution partial differential equations modeling the fluid-structure interaction associated to the dynamics of an elastic vesicle immersed in a moving incompressible viscous fluid. This system of equations couples a phase-field equation-for the interface between the fluid and the vesicle-to the alpha-Navier-Stokes equation-for the viscous fluid-with an extra nonlinear interaction term, namely the bending energy. The stochastic perturbation is an additive space-time noise of trace class on each equation of the system. We prove the existence and uniqueness of solution in classical spaces of $L^2$ functions with estimates of non-linear terms and bending energy. It is based on a priori estimate about the regularity of solutions of finite dimensional systems, and tightness of the approximated solution. AMS 2000 subject classifications. 60H15, 60H30, 37L55, 35Q30, 35Q35, 76D05
Fichier principal
Vignette du fichier
NS-CH.2.1.2019.ARXIV.pdf (544.48 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01972807 , version 1 (07-01-2019)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Ludovic Goudenège, Luigi Manca. Stochastic phase field $\alpha$-Navier-Stokes vesicle-fluid interaction model.. Journal of Mathematical Analysis and Applications, 2021, 496 (1), ⟨10.1016/j.jmaa.2020.124805⟩. ⟨hal-01972807⟩
130 Consultations
101 Téléchargements

Altmetric

Partager

More