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Stochastic phase field α-Navier-Stokes vesicle-fluid
interaction model.

Ludovic Goudenège∗ and Luigi Manca†

Abstract

We consider a stochastic perturbation of the phase field alpha-Navier-Stokes model with
vesicle-fluid interaction. It consists in a system of nonlinear evolution partial differential
equations modeling the fluid-structure interaction associated to the dynamics of an elastic
vesicle immersed in a moving incompressible viscous fluid. This system of equations couples a
phase-field equation -for the interface between the fluid and the vesicle- to the alpha-Navier-
Stokes equation -for the viscous fluid- with an extra nonlinear interaction term, namely the
bending energy.

The stochastic perturbation is an additive space-time noise of trace class on each equation
of the system. We prove the existence and uniqueness of solution in classical spaces of L2

functions with estimates of non-linear terms and bending energy. It is based on a priori
estimate about the regularity of solutions of finite dimensional systems, and tightness of the
approximated solution.
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Introduction and main results
This paper is devoted to study a random perturbation of the equations governing the dynamic of
an elastic vesicle immersed in a moving incompressible viscous fluid, whose deterministic model
have been studied in [12] and [34].

According to [35], these equations are key research in the study of the dynamics of cells in
fluid media. This type of models are of crucial importance in biology, where the analysis of the
deformation of vesicles immersed in fluids is central topic. In particular we can refer to the articles
on the biological aspects (see [1, 4, 5, 14, 13, 16, 32]). In all these articles there is a common
idea about usefulness of phase field approaches. The phase field approaches, compared to sharp
interface models, are natural ways to include several important physical aspects of the phenomenon
being considered, without complexity of the free-boundary value problems, both in the theoretical
and numerical aspects.

First consider the α-Navier-Stokes equation which reads, on the time interval [0, T ], on smooth,
open and bounded space domain Q ⊂ RN in dimension N = 2 or 3, with ν the constant viscosity,
and ρ the constant density of the incompressible fluid:

∂tu+ (w · ∇)u+ (∇w)T · u+
1

ρ
∇p = f + ν∆u,

u = w − α2∆w −∇q,
div (u) = div (w) = 0.

(0.1)

where ∆ is the Laplace operator and f is the forcing. The unknowns∗ are the random fields p
and u (also q and w), which respectively represent the (modified†) pressure and the averaged ve-
locity vector field of the point x at time t. Both unknowns u and w have homogeneous Dirichlet
boundary conditions, and the pressures p and q are defined up to an additive term which could
be used to stay divergence free. This model takes part of a general class of regularized models
for high Reynolds number flows, firstly proposed by Leray in [30, 31] for Euler equations. Some
authors stress that, from the biological point of view, the α-Navier-Stokes type equations are rele-
vant since they are adequate for flows with high Reynolds number (like in turbulence), which may
occur in some biological situations. This model is also known as viscous Camassa-Holm or the
Lagrangian Averaged Navier-Stokes-α (LANS-α) model. These models have been introduced by
Holm, Marsden and Ratiu in [29, 28]. It has been studied in the deterministic case by Foias, Holm
and Titi (see [20, 21]) which have obtained the necessary estimations about the non-linear term
in the Navier-Stokes equation in periodic domain. There are also works in alternative conditions
about domain and boundary conditions in [6, 7, 24]. See also [17] for the link between Camassa-
Holm and LANS-α models.

In [12] and [34] the authors have considered α-Navier-Stokes model for the fluid coupled with a
phase field equation for the membrane of the vesicle. They have introduced a forcing term f which
is a non-linear additive term depending of the phase field unknown. The form of the interaction is
given by the variational derivative of a bending energy of the membrane of the vesicle. We obtain
a system of interaction in the space-time domain [0, T ] ×Q between the fluid and the phase-field
equations under the form :

∂t(w + α2Aw) + νA(w + α2Aw) + B̃(w,w + α2Aw) = P
(
δE(φ)

δφ
∇φ
)
,

div (w) = 0,

φt + w · ∇φ = −γ δE(φ)

δφ
,

(0.2)

where φ is the phase field unknown/order parameter which describes the membrane of the vesicle,
∗With u = (u1, u2, u3) in dimension N = 3 or u = (u1, u2) in dimension N = 2.
†Here the modified or hydrodynamic pressure satisfies p = π −

ρ

2
|w|2 where π is the pressure.
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with the linear Stokes operator A = −P∆, the Leray orthogonal projector P on divergence free
space H, and the non-linear operator B̃ which will be described later.

This unknown φ takes the values +1 outside the membrane and −1 inside, with a thin transition
width characterized by a small positive parameter ε. The surface of the membrane corresponds to
the points where φ = 0, which is actually a very complex area described by the level-set approach,
but not explicitly considered in the phase field approach, or in various numerical approaches. The

term
δE(φ)

δφ
is sometimes called the chemical potential. It is multiplied by the constant γ which is

a positive real number controlling the strength of the chemical potential. Moreover this term can
be modeled using various description, depending of the physical consideration about the vesicle.

It is assumed that the energy associated with the deformation of the vesicle membrane comes
mainly from the bending energy. Actually this energy is not directly well adapted to a priori
estimate of quantities related to φ (like its norm in Sobolev spaces) since the vesicle tends to
minimize the quantity

fε(φ) = −ε∆φ− φ

ε
(1− φ2),

by minimization of the penalized bending energy given by

Eε(φ) =
k

2ε

∫
Q

(
ε∆φ+

φ

ε

(
1− φ2

))2

dx =
k

2ε

∫
Q

fε(φ)2dx,

with the physical parameter k of low relevance here. This bending energy is clearly not a norm
or the sum of two competitive behaviors like in classical Allen-Cahn or Cahn-Hilliard equations.
Although it implies only a second-order differential operator, this energy is more close to a fourth-
order differential linearity as in the Cahn-Hilliard model. Thus the difficulty of the model comes
from this form of energy. Moreover, knowing that the volume and the surface area of the vesicle
are basically preserved, we penalize the bending energy Eε by adding extra terms to form the total
energy E :

E(φ) = Eε(φ) +
1

2
M1(A(φ)− a)2 +

1

2
M2(Bε(φ)− b)2,

where
A(φ) =

∫
Q

φ dx,

Bε(φ) =

∫
Q

(
ε

2
|∇φ|2 +

1

4ε
(φ2 − 1)2

)
dx,

with M1, M2 which are (large) constants used to enforce that the volume and the surface area of
the vesicle remain the same. The constants a and b are physical parameters related to the actual
volume and surface area of the vesicle (see [15] for details).

Finally -and this is the novelty in the modeling- we assume that there exist two stochastic
perturbations ξw and ξφ which are the derivative of space-time noises W and Z, thus formally
ξw = dW and ξφ = dZ. These perturbations are added linearly to both equations of the system of
interaction via covariance operators Σ and Ξ.

Hypothesis 0.1. We assume that

Tr[Σ∗Σ] <∞, Tr[Ξ∗∆2Ξ] <∞.

From a physical perspective, the stochastic perturbation can be seen as an unknown internal
microscopic thermal agitation, or a random source. The technical assumptions of the noises permit
to use the Itô-formula, which is the key to obtain a priori estimates depending of the trace of the
operators. We obtain the abstract formulation of our studied system

d(w + α2Aw) =

(
−νA(w + α2Aw)− B̃(w,w + α2Aw) + P

(
δE(φ)

δφ
∇φ
))

dt+ ΣdWt

dφ =

(
−w · ∇φ− γ δE(φ)

δφ

)
dt+ ΞdZt.

(0.3)
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Moreover this system is endowed by boundary and initial conditions
w = 0, Aw = 0, on [0, T ]× ∂Q,
φ = −1, ∆φ = 0, on [0, T ]× ∂Q,
u(0, x) = u0(x) on Q,
φ(0, x) = φ0(x) on Q,

with initial data u0 and φ0.

Remark 0.2. The apparently extra boundary condition Aw = 0 makes sense, since in α-Navier-
Stokes model, we study a couple of unknowns w and u = w+α2Aw (the pressure q disappears with
Leray’s projection) which have both homogeneous Dirichlet boundary condition u = w = 0 on ∂Q.
Thus α2Aw = 0 on ∂Q.

This system is composed of two stochastic partial differential equations which are coupled by
an energy. So this is clear that the results obtained in this paper about existence and uniqueness
of solution can be extended to more general forms of coupling energy, as soon as it permits a
control of some norm of φ in Hilbert space with space regularity. Actually the studied form
of energy is a mixing between fourth-order Cahn-Hilliard equation and second-order Allen-Cahn
equation. These types of stochastic equations with additive noise have been studied in many works.
For the Cahn-Hilliard equation there are results about existence and uniqueness in [8, 10, 18] with
polynomial nonlinearity, and in [11, 22, 23] for singular nonlinearity and space-time white noises, or
degenerate noises. We can also cite a result of existence for a stochastic partial differential equation
with a mixing between Cahn-Hiliard and Allen-Cahn equation with multiplicative noise. It has
been obtained in [2] with estimations on the Green functions in the spirit of [3, 25]. Concerning
the stochastic Navier-Stokes equation, we can cite the important work present in [26, 27, 33].
Using approximated equations in finite dimensional space, we have exhibited a priori estimates
and compactness of a sequence of solution of these approximated equations. It permits to prove
existence (and uniqueness) of weak (martingale) solution obtained by convergence in weak topology
of classical spaces L2(Q). Precisely we have proved the following:

Theorem 0.3.
Let T > 0 and (w0, φ0) ∈ D(A)× L2(Q) with φ0 = −1 on ∂Q.
Assume that the linear operators (Σ,Ξ) satisfy Hypothesis 0.1.
Then there exists a unique weak solution ((w, φ), (Ω,F ,P, (Ft)t∈[0,T ]), (W,Z))
of problem (0.3). Moreover, for any k ∈ N∗ there exists a constant c = c(k, T, w0, φ0) > 0 such

that

E
[

sup
0≤t≤T

(‖w(t)‖H + |φ(t)|2)
k

]
≤ c,

E

[∫ T

0

(
|w|22 + α2|∇w|22 + E(φ)

)k−1(
ν(|∇w|22 + α2|Aw|22) + γ

∣∣∣∣δE(φ)

δφ

∣∣∣∣2
2

)
ds

]
≤ c.

(0.4)

Finally, φ,w are continuous in mean square, that is for any t0 ≥ 0 we have

lim
t→t0

E
[
|w(t)− w(t0)|2V

]
= 0, lim

t→t0
E
[
|φ(t)− φ(t0)|22

]
= 0.

In section 1, we will describe notations about spaces, classical inequalities and nonlinear esti-
mates about the bending energy which are of crucial importance for the proof of the main result.
Moreover we describe the definition of a solution of equation (0.3). In section 2, we derive a priori
estimate and we prove technical lemmas which will be used in the proof of the main theorem.
Finally in section 3, under the hypotheses of 0.3, we prove existence and uniqueness of solution
which satisfies 0.3. This result is a corollary of a more general result obtained in Section 3 about
existence and uniqueness of solution with an approximation procedure in finite dimensional spaces.
In particular we prove continuity of solution with respect to time with values in Sobolev spaces,
and Lp integrability of solution with respect to time with values in Sobolev spaces (H1 for fluid
unknown w and H4 for parameter order φ).
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1 Spaces, inequalities and nonlinear estimates
The α-Navier-Stokes equation (0.1) can be formulated in the equivalent form given in (0.2). We
need to explain this equivalence, since this is the core of the variational formulation. First we
introduce the following spaces:

• C∞0 (Q) is the space of infinitely differentiable functions with compact support;

• L2(Q), Lp(Q), Hk(Q), Hk
0(Q), W p,k(Q) denotes the usual Sobolev spaces for integrability

order p ∈ N and derivative order k ∈ N; when the functions are vector-valued in dimension
N = 1, 2, 3, we write (L2(Q))N ;

• (·, ·) denotes the inner product of the Hilbert space (L2(Q))N , with N = 1, 2, 3;

• | · |p denotes the norm in the space (Lp(Q))N , with p ∈ N and N = 1, 2, 3;

• ‖ · ‖L denotes the norm in a generic space L;

• 〈·, ·〉L′,L denotes the duality between a generic space L and its dual space L′;

• X is the space (H1
0(Q))N ∩ (H2(Q))N ;

• H is the closure in (L2(Q))N of {u ∈ X : div (u) = 0};

• V is the closure in (H1(Q))N of {u ∈ X : div (u) = 0};

1.1 The Stokes operator A
We denote by P : (L2(Q))N → H the Leray orthogonal projector. The Stokes operator is then
defined by

A := −P∆ : D(A)→ H,

with domain D(A) = X ∩ V ⊂ H. The operator A is self adjoint and positive. Its inverse,
A−1 : H → H, is a compact self adjoint operator, thus H admits an orthonormal basis {ej}j∈N∗
formed by the eigenfunctions of A, i.e. Aej = λjej , with 0 < λ1 ≤ λ2 ≤ · · · ≤ λj → +∞. For
ρ ∈ R, the Sobolev spaces D(Aρ) are the closure of C∞0 (Q) with respect to the norm

‖x‖D(Aρ) =

(∑
k

(1 + λ2ρk ) 〈x, ek〉2
) 1

2

.

As well known (see, for instance, [21]) the operator A can be continuously extended to V = D(A
1
2 )

with values in V ′ = D(A−
1
2 ) such that for all u, v ∈ V

〈Au, v〉V ′,V = (A1/2u,A1/2v) =

∫
Q

(∇u · ∇v) dx,

Similarly A2 can be continuously extended to D(A) with values in D(A)′ (the dual space of the
Hilbert space D(A)) such that for all u, v ∈ D(A)〈

A2u, v
〉
D(A)′,D(A)

= (Au,Av).

One can show that there is a constant c > 0 such that for all w ∈ D(A)

c−1|Aw|2 ≤ ‖w‖H2 ≤ c |Aw|2.

This operator A could also be used to define a stochastic convolution thanks to the strongly
continuous semigroup (etA)t≥0 by the formula

WA(t) =

∫ t

0

e(t−s)AdW (s),

for cylindrical Wiener processes, which could be used for instance to define mild solutions. This
is not the choice made here, since we have enough regularity to define solution with variational
estimation.
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1.2 The bilinear form B̃

The specific form of α-Navier-Stokes equation (0.1) has been studied in [7] for bounded domains,
or in [20] as the Kelvin-filtered Navier-Stokes equation. This equation is also known as the viscous
version of the Camassa-Holm equation. It has been studied in [9] and for periodic domain in [21].
But the global well-posedness for the Lagrangian averaged Navier-Stokes (LANS-α) equations on
bounded domains have been studied in [17] where the authors describe the equivalence between
different formulations. Precisely they show that the α-Navier-Stokes equation (0.1) is equivalent
to LANS-α equations under the condition Aw = 0 on ∂Q. We do not present all the details, but
the central idea is to define a bilinear operator associated to the non-linear part of equation (0.1)
in the spirit of the usual bilinear operator B(w, u) = P [(w · ∇)u] of Navier-Stokes equations. It is
well defined for all w, u ∈ (H1

0(Q))N , and such that for all w, u and v ∈ V ⊂ (H1
0(Q))N

(B(w, u), v) = − (B(w, v), u) .

Thus, applying P to the equation (0.1) and using the identity

(w · ∇)u+ (∇w)Tu = −w × (∇× u) +∇(u · w),

we can see that the nonlinear term of equation (0.1) could be replaced by the bilinear operator B̃
defined for all w, u ∈ (H1

0(Q))N by

B̃(w, u) = −P[w × (∇× u)]

since ∇(u · w) is in the orthogonal of V . This operator appears clearly in the Camassa-Holm
formulation.

The next results will be crucial for many proofs:

Proposition 1.1.
(i) The operator B̃ can be extended continuously to V ×V with values in V′; for all u, v, w ∈ V it
satisfies ∣∣∣∣〈B̃(u, v), w

〉
V ′,V

∣∣∣∣ ≤ c‖u‖1/2H ‖u‖
1/2
V ‖v‖V‖w‖V,∣∣∣∣〈B̃(u, v), w

〉
V ′,V

∣∣∣∣ ≤ c‖u‖V‖v‖V‖w‖1/2H ‖w‖
1/2
V ,〈

B̃(u, v), w
〉
V ′,V

= −
〈
B̃(w, v), u

〉
V ′,V

, and
〈
B̃(u, v), u

〉
V ′,V

= 0.

(ii) Its restriction to D(A) satisfies for all u ∈ V , v ∈ H, w ∈ D(A) it holds∣∣∣∣〈B̃(u, v), w
〉
D(A)′,D(A)

∣∣∣∣ ≤ c‖u‖V‖v‖H‖w‖D(A)

Proof. The proof of (i) is classical and be found, for instance, on [21]. The statement (ii) follows
easily by the estimate∣∣∣∣〈B̃(u, v), w

〉
D(A)′,D(A)

∣∣∣∣ ≤ c(‖u‖1/2H ‖u‖
1/2
V ‖v‖H‖Aw‖H + ‖u‖V‖v‖H‖w‖1/2V ‖Aw‖

1/2
H

)
which can be found, for instance, in [34].

1.3 Definition of solutions
We are now able to define the concept of solution of equation (0.2) or more precisely the solution
of its abstract form (0.3).

Definition 1.2. Let T > 0 and (w0, φ0) ∈ D(A) × L2(Q) with φ0 = −1 on ∂Q. Assume that the
linear operators (Σ,Ξ) satisfy Hypothesis 0.1. We say that ((w, φ), (Ω,F ,P, (Ft)t∈[0,T ]), (W,Z)) is
a weak solution of (0.3) if
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• (Ω,F ,P, (Ft)t∈[0,T ]) is a complete filtered probability space.

• w, φ are adapted to the filtation (Ft)t∈[0,T ].

Moreover, P-a.s.,

• w ∈ L2([0, T ];D(A));

• w + α2Aw ∈ C([0, T ];D(A)′) ∩ L2([0, T ]; H);

• B̃(w,w + α2Aw) ∈ L2([0, T ];D(A)′);

• φ ∈ L2([0, T ]; H2(Q)) ∩ C([0, T ]; L2(Q)) such that φ+ 1 = ∆φ = 0 on ∂Q;

• δE(φ)

δφ
∈ L2([0, T ]; L2(Q)) (this term will be defined in Section 1.4);

• w · ∇φ ∈ L2([0, T ]; L2(Q));

• δE(φ)

δφ
∇φ ∈ L2([0, T ];D(A)′);

• For all ξ ∈ D(A), for all t ∈ [0, T ] we have

〈
w(t) + α2Aw(t), ξ

〉
=
〈
w0 + α2Aw0, ξ

〉
− ν

∫ t

0

〈
w + α2Aw,Aξ

〉
ds

−
∫ t

0

〈
B̃(w,w + α2Aw), ξ

〉
ds+

∫ t

0

〈
δE(φ)

δφ
∇φ, ξ

〉
ds+ 〈Σ∗ξ,Wt〉

φ(t) = φ0 −
∫ t

0

(
w · ∇φ+ γ

δE(φ)

δφ

)
ds+ ΞZt.

(1.1)

1.4 Nonlinear estimates
From now and to the end of this article we will skip the parameters ε and k (set to the value 1)
because it does not bring very useful information and the reading will be clearly simplified. For
this reason we will be very cautious about cancellation during subtraction of terms.

The variational derivative of E with respect to the variable φ at point φ in the direction ψ is
defined for any φ+ 1, ψ ∈ C∞0 (Q). by〈

δE

δφ
(φ), ψ

〉
= lim

h→0

E(φ+ hψ)− E(φ)

h
=

∫
Q

δE

δφ
(φ)ψ dx

=

∫
Q

f(φ) (f ′(φ)ψ) dx+M1(A(φ)− a)A(ψ) +M2(B(φ)− b)
∫
Q

f(φ)ψ dx

Here we have set
f ′(φ)ψ = −∆ψ + (3φ2 − 1)ψ.

In this case the variational derivative of E can be identified with

δE

δφ
(φ) = ∆2φ−∆(φ3 − φ) + (3φ2 − 1)f(φ) +M1(A(φ)− a) +M2(B(φ)− b)f(φ). (1.2)

Proposition 1.3. There exists c > 0 such that for any φ+ 1 ∈ C∞0 (Q) it holds

|∆φ|22 + |∇φ|42 + |φ∇φ|22 + |φ|84 + |φ|66 ≤ c(1 + E(φ)). (1.3)

and
E(φ) ≤ c(1 + ‖φ‖8H2) (1.4)

7



Proof. We have
4B(φ) = 2|∇φ|22 + |φ2 − 1|22 = 2|∇φ|22 + |φ|44 − 2|φ|22 + |Q|. (1.5)

Then, since |φ|22 ≤
1

2
|Q|2 +

1

2
|φ|44, there exists c > 0 such that

|∇φ|22 + |φ|44 + |φ|22 ≤ c(1 + B(φ)). (1.6)

Clearly, for some other constant c > 0 it holds

|∇φ|42 + |φ|84 + |φ|42 ≤ c(1 + (B(φ))2) ≤ c(1 + E(φ)).

At this point, it remains to bound the quantity |∆φ|22 + |φ∇φ|22 + |φ|66. Using the expression of f(φ)
we get

2|f(φ)|22 = | −∆φ+ φ(φ2 − 1)|22
= |∆φ|22 − 2〈∆φ, φ(φ2 − 1)〉+ |φ(φ2 − 1)|22
= |∆φ|22 + 2〈∇φ, 3φ2∇φ−∇φ〉+ |φ|66 − |φ|22
= |∆φ|22 + 6|φ∇φ|22 − 2|∇φ|22 + |φ|66 − |φ|22 (1.7)

Here we use the fact that φ(φ2 − 1) ∈ C∞0 (Q) in order to perform integration by parts. Thus,

|∆φ|22 + |φ∇φ|22 + |φ|66 ≤ 2|f(φ)|22 + 2|∇φ|22 + |φ|22

Using the estimate (1.6) and elementary inequalities, there exist constants c, c′ > 0 such that

|∆φ|22 + |φ∇φ|22 + |φ|66 ≤ 2|f(φ)|22 + c(1 + B(φ)) ≤ c′(1 + E(φ)).

Then, (1.3) follows easily. Let us show (1.4). By (1.7) and the embedding H1 ⊂ L6(Q) we find
that for some c > 0, independent by φ it holds

2|f(φ)|22 ≤ |∆φ|22 + 6|φ∇φ|22 + |φ|66 ≤ |∆φ|22 + 6|φ∇φ|22 + c‖φ‖6H1

Moreover, by Poincaré inequality

|φ∇φ|22 ≤ |φ|2∞|∇φ|22 ≤ (|φ+ 1|∞ + 1)2|∇φ|22 ≤ (c|∇φ|2 + 1)2|∇φ|22 ≤ 2(c|∇φ|22 + 1)|∇φ|22.

We deduce that for some c > 0

2|f(φ)|22 ≤ |∆φ|22 + 2c|∇φ|42 + 2c|∇φ|22 + c‖φ‖6H1 ≤ c(1 + ‖φ‖6H2).

The inequality (A(φ) − a)2 ≤ c(1 + |φ|22), with c = c(a) follows immediately. By (1.5) and the
embedding H1 ⊂ L4(Q) we get

4B(φ) ≤ 2|∇φ|2 + |φ|44 + |Q| ≤ c2|∇φ|2 + ‖φ‖4H1 + |Q|

Then, for some c > 0 it holds
(B(φ)− b)2 ≤ c(1 + ‖φ‖8H1).

Then, by the bounds obtained above, we deduce that (1.4) holds for some c > 0 independent by
φ.

Proposition 1.4. There exists a constant c > 0 such that for any φ+ 1 ∈ C∞0 (Q) it holds

|∆2φ|2 ≤
∣∣∣∣δEδφ (φ)

∣∣∣∣
2

+ c(1 + E(φ)2) (1.8)
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Proof. By (1.2) we have

|∆2φ|2 ≤
∣∣∣∣δEδφ (φ)

∣∣∣∣
2

+ I1 + I2 + I3 + I4,

where

I1 =
∣∣(−∆)

(
(φ2 − 1)φ

)∣∣
2
,

I2 =
∣∣(3φ2 − 1)f(φ)

∣∣
2
,

I3 = M1 |(A(φ)− a)|2 ,
I4 = M2 |(B(φ)− b)f(φ)|2 .

For I1 we have
I1 = 6φ|∇φ|2 + 3φ2∆φ−∆φ

Then by basic inequality we get

I1 ≤ 6|φ|∞|∇φ|24 + 3|φ|2∞|∆φ|2 + |∆φ|2

The Poincaré inequality yields |φ|∞ ≤ |φ + 1|∞ + 1 ≤ CP |∇φ|2 + 1 where CP is the Poincaré
constant. Moreover, by the Sobolev embedding H1(Q) ⊂ L4(Q) we get |∇φ|24 ≤ c|∇φ|2H1 for some
constant c > 0 independent by φ. Then, using repeatedly the Young inequality we get that there
exists c > 0 such that

I1 ≤ 6c (CP |∇φ|2 + 1) |∇φ|2H1 + 3 (CP |∇φ|2 + 1)
2 |∆φ|2 + |∆φ|2

≤ c
(
1 + |∇φ|22 + |∇φ|4H1 + |∇φ|42 + |∆φ|22 + |∆φ|2

)
.

Notice that |∇φ|H1 ≤ |φ|H2 ≤ c(|φ|2 + |∇φ|2 + |∆φ|2) for some c > 0 independent of φ. Then, still
using Young inequality, there exists a constant c1 > 0 such that

I1 ≤ c1
(
1 + |φ|24 + |∇φ|42 + |∆φ|42

)
.

For I2, using the expression of f(φ) and the Poincaré inequality |φ+ 1|∞ ≤ CP |∇φ|2 we obtain

I2 ≤
(
3|φ|2∞ + 1

)
|f(φ)|2

≤
(
3(|φ+ 1|∞ + 1)2 + 1

)(1

2
|∆φ|2 +

1

4

(
|φ|36 + |φ|2

))
≤

(
3(CP |∇φ|2 + 1)2 + 1

)(1

2
|∆φ|2 +

1

4

(
|φ|36 + |φ|2

))
.

By applying the inequality (α + β)2 ≤ 2α2 + 2β2 repeatedly, we find that there exists a constant
c2 > 0 such that

I2 ≤ c2
(
|∆φ|22 + |∇φ|42 + |φ|66 + |φ|22 + 1

)
.

Clearly, for I3 there exists a constant c3 > 0 such that

I3 ≤ c4 (|φ|2 + 1)

For I4 we have, by the expression of B(φ) and f(φ),

I4 ≤ M2(B(φ) + b)|f(φ)|2

≤
(

1

2
|∇φ|22 +

1

4
(|φ|44 + 2|φ|22 + |Q|) + b

)(
1

2
|∆φ|2 +

1

4

(
|φ|36 + |φ|2

))

Using the inequality (α+β)2 ≤ 2α2 +2β2 repeatedly, it is easy to show that there exists a constant
c4 > 0 such that

I4 ≤ c4
(
|φ|84 + |φ|42 + |φ|66 + |∇φ|42 + |∆φ|22 + 1

)
.

Taking into account the estimates on I1, . . . , I4, by (1.3) we deduce that there exists c > 0 such
that

I1 + I2 + I3 + I4 ≤ C(|φ|42 + |φ|84 + |φ|66 + |∇φ|42 + |∆φ|42) ≤ c(1 + (E(φ))2).
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Proposition 1.5. There exists a constant c > 0 such that for any φ+ 1 ∈ C∞0 (Q)∣∣∣∣Ξ∗ δEδφ (φ)

∣∣∣∣
2

≤ c
(
1 + |φ|84 + |φ|36 + |∇φ|42 + |∆φ|22

)
(1.9)

Proof. By (1.2) we have

Ξ∗
δE

δφ
(φ) = I1 + I2 + I3 + I4 + I5,

where ( we recall that k = ε = 1 )

I1 = Ξ∗∆2φ,

I2 = Ξ∗(−∆)
(
(φ2 − 1)φ

)
,

I3 = Ξ∗(3φ2 − 1)f(φ),

I4 = M1Ξ∗(A(φ)− a),

I5 = M2Ξ∗(B(φ)− b)f(φ).

By Hypothesis 0.1 and remark 1.7, there exists c1 > 0 such that

|I1|2 ≤ c1|∆φ|2.

For I2, still by Hypothesis 0.1 and Remark 1.7 there exists c > 0 such that

|I2|2 ≤ c|(φ2 − 1)φ|2

Then by basic inequality we get, for some c2 > 0,

|I2|2 ≤ c2(|φ|36 + |φ|2).

Since Ξ∗ is a bounded linear operator, the terms I3, I4, I5 can be estimated as done for Proposition
1.4 to get

|I3|2 ≤ c3
(
|φ|44 + |∆φ|22 + |φ|66 + |φ|22 + 1

)
|I4|2 ≤ c4 (|φ|2 + 1)

|I5|2 ≤ c5
(
|∇φ|42 + |φ|84 + |φ|42 + |∆φ|22 + |φ|66 + 1

)
.

for some constant c3, c4, c5 independent by φ. Taking into account the estimates for Ii, i = 1, . . . , 5,
the claim follows.

The second variational of E in φ is a bilinear form on C∞0 (Q)⊗ C∞0 (Q) and takes the form(
δ2E

δφ2
(φ)

)
(ψ, ρ) =

∫
(f ′(φ)ψ) (f ′(φ)ρ) dx+

∫
Q

f(φ) (f ′′(φ)(ψ, ρ)) dx+M1A(ψ)A(ρ)

+M2

(∫
Q

f(φ)ρ dx

)(∫
Q

f(φ)ψ dx

)
+M2(B(φ)− b)

∫
Q

(f ′(φ)ρ)ψ dx

where
f ′′(φ)(ψ, ρ) = 6φψρ.

When ψ = ρ it takes the form(
δ2E

δφ2
(φ)

)
(ψ,ψ) =

∫
(f ′(φ)ψ)

2
dx+

∫
Q

f(φ) (f ′′(φ)(ψ,ψ)) dx+M1 (A(ψ))
2

+M2

(∫
Q

f(φ)ψ dx

)2

+M2(B(φ)− b)
∫
Q

(f ′(φ)ψ)ψ dx.

Proposition 1.6. There exists a constant c > 0 such that for any φ+ 1, ψ ∈ C∞0 (Q) it holds(
δ2E

δφ2
(φ)

)
(ψ,ψ) ≤ c

(
|∆φ|22 + |∇φ|42 + |φ|24 + 1

) (
|ψ|22 + |∇ψ|22 + |∆ψ|22

)
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Proof. Let us write
δ2E(φ)

δφ2
(ψ,ψ) = I1 + I2 + I3 + I4 + I5,

where

I1 =

∫
(f ′(φ)ψ)

2
dx

I2 =

∫
Q

f(φ) (f ′′(φ)(ψ,ψ)) dx

I3 = M1 (A(ψ))
2

I4 = M2

(∫
Q

f(φ)ψ dx

)2

I5 = M2(B(φ)− b)
∫
Q

(f ′(φ)ψ)ψ dx.

For I1 we have

I1 = | (f ′(φ)ψ) |22
= | −∆ψ + (3φ2 − 1)ψ|22
≤

(
|∆ψ|2 + (3|φ|2∞ + 1)|ψ|2

)2
Since |φ|∞ ≤ |φ + 1|∞ + 1 and by Poincaré inequality there exists a constant CP > 0 such that
|φ+ 1|∞ ≤ CP |∇φ|2, the right hand side is bounded by

(|∆ψ|2 + (3(CP |∇φ|2 + 1) + 1)|ψ|2)
2
.

Then it follows that there exists a constant d1 > 0 such that

I1 ≤ d1|∆ψ|22 + d1
(
|∇φ|22 + 1

)
|ψ|22.

For I2 we have, using Hölder inequality,

I2 = 6

∫
Q

(
−∆φ+ (φ2 − 1)φ

)
φψ2 dx

≤ 6

(∫
Q

|∆φφ|dx+

∫
Q

|φ2 − 1|φ2dx

)
|ψ|2∞

≤ 6

(
1

2
|∆φ|22 +

1

2
|φ|22 + |φ|44 + |φ|22

)
|ψ|2∞.

Then there exists d2 such that

I2 ≤ d2
(
|∆φ|22 + |φ|44 + |φ|22

)
|ψ|2∞

The term I3 is easily bounded by

I3 ≤M1|Q||ψ|22 = d3|ψ|22,

where d3 = M1|Q|. For I4 we have

I4 ≤M2|f(φ)|22|ψ|22.

It is easy to see that
|f(φ)|2 ≤ |∆φ|2 + (|φ|36 + |φ|2)

holds. Taking into account the inequality (a+ b)2 ≤ 2a2 + 2b2, there exists a constant d4 > 0 such
that

I4 ≤ d4
(
|∆φ|22 + |φ|66 + |φ|22

)
|ψ|22.
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For I5 we can use Hölder inequality to get

I5 ≤M2 (B(φ) + b) |Q|1/2|f ′(φ)ψ|2. (1.10)

Since
B(φ) =

1

2
|∇φ|22 +

1

4
|φ2 − 1|22

using Young inequality and Hölder inequality we get

B(φ) ≤ 1

2
|∇φ|22 +

1

2

(
|φ2|22 + 1

)
=

1

2
|∇φ|22 +

1

2

(
|φ|44 + 1

)
For the last term on the right-hand side we can argue as for I1 to get

| (f ′(φ)ψ) |2 ≤ |∆ψ|2 + |(3φ2 − 1)ψ|2
≤ |∆ψ|2 + |3φ2 − 1|2|ψ|∞
≤ |∆ψ|2 +

(
3|φ|24 + 1

)
|ψ|∞ (1.11)

Taking into account (1.10), (1.4) and (1.11), the term I5 is bounded by

I5 ≤M2

(
1

2
|∇φ|22 +

1

2

(
|φ|44 + 1

)
+ b

)(
|∆ψ|2 +

(
3|φ|24 + 1

)
|ψ|∞

)
Elementary calculus and inequality αβ ≤ α2/2 + β2/2 show that for some constant c > 0,(

1

2
|∇φ|22 +

1

2

(
|φ|44 + 1

)) (
3|φ|24 + 1

)
≤ c

(
|∇φ|42 + |φ|44 + 1

)
.

Then there exists a constant d5 such that

I5 ≤ d5
(
|∇φ|42 + |φ|44 + 1

)
(|ψ|2 + |ψ|∞)

Summing up the bounds for I1, I2, I3, I4, I5 and taking into account the Poincaré inequality |ψ|∞ ≤
CP |∇ψ|2 the result follows.

1.5 Trace estimates
We recall that we have made the following assumption on the operator Σ and Ξ.

Tr[Σ∗Σ] <∞, Tr[Ξ∗∆2Ξ] <∞.

Since for X,Y two separable Hilbert spaces and A : X → Y a linear operator, we have

Tr[A∗A] = Tr[AA∗].

thus Tr[Ξ∗∆2Ξ] <∞⇐⇒ Tr[∆ΞΞ∗∆] <∞.

Remark 1.7. If Tr[Ξ∗∆2Ξ] <∞, then Ξ∗∆ : H2(Q) ∩H1
0(Q)→ K (in the definition of the noise,

we usually have Ξ : K → H, with K 6= H in general) is closable and can be extended to a bounded
linear operator Ξ∗∆ : H→ K.

Proof. Let u ∈ H2(Q) ∩H1
0(Q) and let (ek)k be a orthonormal basis of K. Then

‖Ξ∗∆u‖2K =
∑
k

〈Ξ∗∆u, ek〉2 =
∑
k

〈u,∆Ξek〉2 ≤ ‖u‖2H
∑
k

|∆Ξek|2K = ‖u‖2HTr[Ξ∗∆2Ξ].

( notice that we have used the same notation 〈·, ·〉 for the scalar product in K and in H ). Then
by the closed graph theorem we obtain the result.
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Proposition 1.8. If Tr[Ξ∗∆2Ξ] <∞ then Tr[Ξ∗Ξ] < +∞. Moreover the sequences

(|Ξei|∞)i∈N, (‖Ξei‖W 2,2(Q))i∈N, (|∇Cei|3)i∈N

are in `2(N) and there exists a constant c > 0 such that∑
i∈N

(
|Ξei|2∞ + ‖Ξei‖2W 2,2(Q) + |∇Ξei|23

)
≤ cTr[Ξ∗∆2Ξ].

Proof : Since ei is a component of an orthonormal basis then
〈
Ξ∗∆2Ξei, ei

〉
≤ Tr[Ξ∗∆2Ξ] < +∞

i.e. ∆Ξei ∈ L2(Q). This implies that

Tr[Ξ∗Ξ] = |Ξe0|22 +

∞∑
i=1

|Ξei|22 ≤ |Ξe0|22 + ‖(−∆)−1‖2L(H)

∞∑
i=1

|∆Ξei|22

≤ max{1, ‖(−∆)−1‖2L(H)}Tr[Ξ∗∆2Ξ],

and in particular Ξei ∈ W 2,2(Q). Denote M = max{1, ‖(−∆)−1‖2L(H)}. Moreover by Sobolev
embedding W 2,2(Q) ⊂ C0,γ for all γ < 1/2 then there exists M ′ > 0 such that

∞∑
i=1

|Ξei|2∞ ≤M ′
∞∑
i=1

‖Ξei‖2W 2,2(Q) ≤ 4MM ′
∞∑
i=1

|∆Ξei|22 ≤ 4MM ′Tr[Ξ∗∆2Ξ].

Finally by Sobolev embeddingW 1, 32 (Q) ⊂ L3(Q) and Hölder’s inequality then there existsM ′′ > 0
such that

∞∑
i=1

‖∇Ξei‖23 ≤ M ′′
∞∑
i=1

‖Ξei‖2W 1,3/2(Q) ≤M
′′
∞∑
i=1

(
|Ξei|23/2 + |∇Cei|23/2

)
≤ M ′′(|Q|)1/3

∞∑
i=1

(
|Ξei|22 + |∇Ξei|22

)
≤M ′′(|Q|)1/3

∞∑
i=1

‖Ξei‖2W 2,2(Q) < +∞.

Proposition 1.9. Under hypothesis of proposition 2.1, there exists a constant c > 0, depending
on the operator Ξ, such that for any φ+ 1 ∈ C∞0 (Q) it holds

Tr

[
ΞΞ∗

δ2E(φ)

δφ2

]
≤ c

(
|∆φ|22 + |∇φ|42 + |φ|24 + 1

)
Tr[Ξ∗∆2Ξ]

Proof : By Lemma 1.6, for any eigenvector ei we have〈
Ξ
δ2E(φ)

δφ2
,Ξei

〉
≤ c

(
|∆φ|22 + |∇φ|42 + |φ|24 + 1

) (
|Ξei|22 + |∇Ξei|22 + |∆Ξei|22

)
By taking the sum over i and using Proposition 1.8 we get the result.

2 Existence of a solution - preliminaries

2.1 Approximated equation and a priori estimates
Before proceeding to the proof, we need an approximation of equation (0.2).

Let us choose {ej}j∈N∗ ∈ H to be the eigenfunctions of the Stokes operator with homogeneous
boundary conditions, such that {ej}j∈N∗ forms an orthonormal basis for H. Let also {ηj}j∈N∗ ∈
L2(Q) be the orthonormal basis in L2(Q) consisting of the eigenfunctions of the Laplacian ∆ with
homogeneous Dirichlet boundary conditions.

Next, set Sn = span{e1, . . . , en}, Nn = span{η1, . . . , ηn}. Finally, we denote by Pn : H → H
the orthogonal projection of H to Sn, and by πn : L2(Q) → L2(Q) the orthogonal projection of
L2(Q) into Nn.
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We consider the equations

d(wn + α2Awn) = PnΣdW (t)+(
−νA(wn + α2Awn)− PnB̃(wn, wn + α2Awn) + Pn

(
πn

(
δE(φn)

δφ

)
∇φn

))
dt, in [0, T ]×Q,

dφn =

(
−πn (wn · ∇φn)− γπn

(
δE(φn)

δφn

))
dt+ πnΞdW ′(t), in [0, T ]×Q,

wn(0) = Pnw0, in Q,
φn(0) = πn(φ0 + 1)− 1, in Q.

(2.1)
Equation (2.1) is a system of ordinary stochastic differential equations with polynomial non-

linear coefficients. Therefore, there exists a unique local strong solution (wn, φn) defined up to a
blow up random time τ(ω). In order to show global existence and uniqueness of a solution for the
approximated equations, we shall show a priori estimates.

By applying formally (exact proof is in the next section) the Itô formula we find

d
(
|wn|22 + α2|∇wn|22

)
=

(
ν(|∇wn|22 + α2|Awn|22) +

〈
PnB̃(wn, wn + α2Awn), wn

〉
+

〈
Pn

(
πn

(
δE(φn)

δφ

)
∇φn

)
, wn

〉
+

1

2
Tr[(PnΣ)∗(I + α2A)−1(PnΣ)]

)
dt

+ 〈wn, (PnΣ)dW (t)〉 (2.2)

and

dE(φn) =

(
−
〈
πn(∇φn · wn),

δE(φn)

δφ

〉
− γ

∣∣∣∣δE(φn)

δφ

∣∣∣∣2
2

+
1

2
Tr

[
(πnΞ)∗(πnΞ)

δ2E(φn)

δφ2

])
dt

+

〈
δE(φn)

δφ
, (πnΞ)dW ′(t)

〉
(2.3)

Notice that by Proposition 1.1 and by the fact that wn ∈ Sn we have〈
PnB̃(wn, wn + α2Awn), wn

〉
=
〈
B̃(wn, wn + α2Awn), wn

〉
= 0

and〈
Pn

(
πn

(
δE(φn)

δφ

)
∇φn

)
, wn

〉
=

〈
πn

(
δE(φn)

δφ

)
,∇φn · wn

〉
=

〈
δE(φn)

δφ
, πn (∇φn · wn)

〉
Then, by summing up (2.2) and (2.3) we find

d
(
|wn|22 + α2|∇wn|22 + E(φn)

)
=

(
ν(|∇wn|22 + α2|Awn|22)− γ

∣∣∣∣δE(φn)

δφ

∣∣∣∣2
2

+
1

2
Tr[(PnΣ)∗(I + α2A)−1(PnΣ)] +

1

2
Tr

[
(πnΞ)∗(πnΞ)

δ2E(φn)

δφ2

])
dt

+ 〈wn, (PnΣ)dW (t)〉+

〈
δE(φn)

δφ
, (πnΞ)dW ′(t)

〉
(2.4)

2.2 Existence and uniqueness for the approximated equation
Theorem 2.1. Let (w0, φ0) ∈ D(A) × L2(Q) and assume that Hypothesis 0.1 holds. Then, for
any n ∈ N, T > 0 there exists a solution (wn, φn) ∈ L2([0, T ];D(A))×L2([0, T ]; L2(Q)) of problem
(2.1). Moreover, for any T > 0, k ∈ N∗ there exists a constant c = c(k, T, φ0, w0) > 0 such that
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for any n ∈ N∗

sup
0≤t≤T

E
[(
|wn(t)|22 + α2|∇wn(t)|22 + E(φn(t))

)k] ≤ c
E

[∫ T

0

(
|wn|22 + α2|∇wn|22 + E(φn)

)k−1(
ν(|∇wn|22 + α2|Awn|22) + γ

∣∣∣∣δE(φn)

δφ

∣∣∣∣2
2

)
ds

]
≤ c

Proof. Set
F(t) = F(t, wn, φn) = |wn|22 + α2|∇wn|22 + E(φn) (2.5)

For any N > 0, n ∈ N∗ we consider the stopping time

τnN = inf{t : F(t, wn, φn) > N}.

As pointed out previously, (2.1) is a system of ordinary differential equations with polynomial
nonlinearities. Then, there exists a local solution (wn, φn) up to a blow up time τ(ω). Since the
functions wn(t∧ τnN ), φn(t∧ τnN ) are bounded by N , we can apply the Itô formula in (2.4) to obtain

Fk(t ∧ τnN ) + 2k

∫ t∧τnN

0

Fk−1 ×

(
ν(|∇wn|22 + α2|Awn|22) + γ

∣∣∣∣δE(φn)

δφ

∣∣∣∣2
2

)
ds

= 2k

∫ t∧τnN

0

Fk−1 ×
(

1

2
Tr[(PnΣ)∗(I + α2A)−1(PnΣ)] +

1

2
Tr

[
(πnΞ)∗(πnΞ)

δ2E(φn)

δφ2

])
ds

+2k

∫ t∧τnN

0

Fk−1 〈wn, (PnΣ)dW (s)〉+ 2k

∫ t∧τnN

0

Fk−1
〈
δE(φn)

δφ
, (πnΞ)dW ′(s)

〉
+k(k − 1)

∫ t∧τnN

0

Fk−2
(
|(PnΣ)∗wn|22 +

∣∣∣∣(πnΞ∗)
δE(φn)

δφ

∣∣∣∣2
2

)
ds

= I1 + I2 +Mt

where Mt is the martingale term. Let us estimate I1. By Proposition 1.9 there exists c1 > 0 such
that

1

2
Tr

[
(πnΞ)∗(πnΞ)

δ2E(φn)

δφ2

]
≤ c1

(
|∆φn|22 + |∇φn|42 + |φn|24 + 1

)
Tr[Ξ∗∆2Ξ].

By (1.3) and elementary inequalities there exists a positive constant c2 such that(
|∆φn|22 + |∇φn|42 + |φn|24 + 1

)
≤ c2(1 + E(φn)) ≤ c2(1 + F).

Taking into account that Tr[Ξ∗∆2Ξ] and Tr[Σ∗(I+α2A)−1Σ] are bounded, there exists c3 > 0 that

I1 ≤ c3
∫ t∧τnN

0

(Fk−1 + Fk)ds

Let us estimate I2. By (1.9) there exists c4 > 0 such that∣∣∣∣(πnΞ)∗
δE(φn)

δφ

∣∣∣∣2
2

≤ c4
(
1 + |φn|84 + |φn|36 + |∇φn|42 + |∆φn|22

)2
.

Using (1.3), the quantity on the right hand side is bounded by c(1 +E(φn)2), for a suitable c > 0
independent by φ. By elementary inequalities and the fact that the operators PnΣ∗ are uniformly
bounded with respect to n, we deduce that for there exists c5 > 0, independent by n, φn, wn such
that

I2 ≤ c5
∫ t∧τnN

0

(
Fk−2 + Fk

)
ds.

Finally,

Fk(t ∧ τnN ) ≤c3
∫ t∧τnN

0

(Fk−1 + Fk)ds+ c5

∫ t∧τnN

0

(
Fk−2 + Fk

)
ds

+ 2k

∫ t∧τnN

0

Fk−1 〈wn, (PnΣ)dW (s)〉+ 2k

∫ t∧τnN

0

Fk−1
〈
δE(φn)

δφ
, (πnΞ)dW ′(s)

〉
(2.6)
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Befor taking expectation, we need to verify that the martingale terms are integrable. Notice that
since the operator Σ is bounded there exists c6 > 0 such that

Fk−1|(PnΣ)∗wn|2 ≤ c6(1 + Fk).

Then, since Fk(t ∧ τn) ≤ Nk, we can take expectation to obtain

2kE
∫ t∧τnN

0

Fk−1 〈wn, (PnΣ)dW (s)〉 = 0.

Similarly, for the second term we can use estimate (1.9) and obtain, for some c6 > 0

Fk−1
∣∣∣∣(πnΞ)∗

δE(φn)

δφ

∣∣∣∣
2

≤ c6Fk−1
(
1 + |φn|84 + |φn|36 + |∇φn|42 + |∆φn|22

)
As we pointed out previously, by (1.3) there exists c > 0 such that(

1 + |φ|84 + |φn|36 + |∇φn|42 + |∆φn|22
)
≤ c(1 + E(φn)) ≤ c(1 + F).

Then, there exists c7 > 0 such that

Fk−1
∣∣∣∣(πnΞ)∗

δE(φn)

δφ

∣∣∣∣
2

≤ c7Fk−1(1 + F).

This implies that we can take expectation to obtain

2kE
∫ t∧τnN

0

Fk−1
〈
δE(φn)

δφ
, (πnΞ)dW ′(s)

〉
= 0.

Finally, by taking expectation in (2.6) we get

E[Fk(t ∧ τnN )] + 2kE

[∫ t∧τnN

0

Fk−1 ×

(
ν(|∇wn|22 + α2|Awn|22) + γ

∣∣∣∣δE(φn)

δφ

∣∣∣∣2
2

)
ds

]

≤ c3E

[∫ t∧τnN

0

(Fk−1 + Fk)ds

]
+ c5E

[∫ t∧τnN

0

(
Fk−2 + Fk

)
ds

]
. (2.7)

Clearly, there exists a constant c > 0 such that Fk−1 ≤ c(1 + Fk) and Fk−2 ≤ c(1 + Fk). Then,
there exists c7 > 0, depending only on k, φ0, w0, such that the right-hand side of (2.7) is bounded
by

c7E

[∫ t∧τnN

0

(1 + Fk)ds

]
≤ c7E

[∫ t

0

(1 + Fk(s ∧ τnN ))ds

]
.

Using Gronwall lemma, we find that there exists a constant c8 > 0 depending on k, T , φ0, w0, such
that

sup
t∈[0,T ]

E[Fk(t ∧ τnN )] + 2k

∫ T∧τnN

0

Fk−1 ×

(
ν(|∇wn|22 + α2|Awn|22) + γ

∣∣∣∣δE(φn)

δφ

∣∣∣∣2
2

)
ds ≤ c.

Letting N →∞ we conclude the proof.

Theorem 2.2. Let (w0, φ0) ∈ D(A)×L2(Q) and assume that Hypothesis 0.1 holds. Then for any
T > 0, k ∈ N there exists c = c(k, T, w0, φ0) > 0 such that

E

[
sup
t∈[0,T ]

(
|wn|22 + α2|∇wn|22 + E(φn)

)k] ≤ c.
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Proof. As done for the previous Theorem, let us set F as in (2.5). By Theorem 2.1 the solution
(wn, φN ) is global and all moments of F have finite expectation. Then by Itô formula (2.4) we get

Fk(t) = 2k

∫ t

0

Fk−1 ×

((
−ν(|∇wn|22 + α2|Awn|22)− γ

∣∣∣∣δE(φn)

δφ

∣∣∣∣2
2

+
1

2
Tr[(PnΣ)∗(I + α2A)−1(PnΣ)] +

1

2
Tr

[
(πnΞ)∗(πnΞ)

δ2E(φn)

δφ2

])
ds

)
+k(k − 1)

∫ t

0

Fk−2
(
|(PnΣ)∗wn|22 +

∣∣∣∣(πnΞ∗)
δE(φn)

δφ

∣∣∣∣2
2

)
ds

+2k

∫ t

0

Fk−1 〈wn, (PnΣ)dW (s)〉+ 2k

∫ t

0

Fk−1
〈
δE(φn)

δφ
, (πnΞ)dW ′(s)

〉
= I1 + I2 +Mt

Where I1, I2 are the integrals containing Fk−1 and Fk−1 respectively, and Mt is the martingale
term. As we done for Theorem 2.1, I1, I2 are uniformly bounded in t by

I1 + I2 ≤ c
∫ T

0

(1 + Fk)ds,

where c > 0 is a suitable constant depending only by k, T . For the martingale part, we can use
Burkholder-Davis-Gundy inequality to get for some constant c1, c2 > 0

E

(
sup
t∈[0,T ]

∣∣∣∣∫ t

0

Fk−1 〈wn, (PnΣ)dW (s)〉
∣∣∣∣
)
≤ c1E

(∫ T

0

F2(k−1) |(PnΣ)∗wn|22 ds

) 1
2

≤ c2E

(∫ T

0

F2kds

) 1
2

<∞

The last term is bounded thanks to Theorem 2.1. Again, by Burkholder-Davis-Gundy inequality
there exists c3 > 0 such that

E

(
sup
t∈[0,T ]

∣∣∣∣∫ t

0

Fk−1
〈
δE(φn)

δφ
, (πnΞ)dW ′(s)

〉∣∣∣∣
)
≤ c3E

(∫ T

0

F2(k−1)
∣∣∣∣(πnΞ)∗

δE(φn)

δφ

∣∣∣∣2
2

ds

) 1
2

By estimate (1.9) and (1.3), there exists c4 > 0 such that the right-hand side is bounded by

c4E

(∫ T

0

F2(k−1)(1 + F2)ds

) 1
2

.

Then, by 2.1 this integral is finite. This completes the proof.

2.3 Compactness argument - convergence to a solution
Let X be a Banach space with norm ‖ · ‖X . For p ≥ 1, θ ∈]0, 1[ we denote by W θ,p([0, T ];X)
classical Sobolev space of all functions f ∈ Lp([0, T ];X) such that∫ T

0

∫ T

0

|f(t)− f(s)|p2
|t− s|1+θp

dsdt <∞,

endowed with the norm

‖f‖W θ,p([0,T ];X) =

(
‖f‖pLp([0,T ];X) +

∫ T

0

∫ T

0

‖f(t)− f(s)‖pX
|t− s|1+θp

dsdt

) 1
p

.

The proof of the following lemma is left to the reader.
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Lemma 2.3. Let X a Banach space. For any θ ∈]0, 1/2[ p ≥ 1 there exists c = c(θ, p) such that
for any f ∈ L2([0, T ];X) it holds∥∥∥∥∫ ·

0

f(τ)dτ

∥∥∥∥
W θ,p([0,T ];X)

≤ c(θ, p)‖f‖L2([0,T ];X).

Proposition 2.4. For any T > 0, θ ∈]0, 1/2[, p ≥ 1 there exists c = c(T, θ, p) > 0 such that for
any n ∈ N

E
[
‖wn + α2Awn‖2W θ,p([0,T ];D(A)′)

]
≤ c.

Proof. For any n ∈ N, ξ ∈ D(A) we have

〈
wn(t) + α2Awn(t), ξ

〉
(D(A)′,D(A))

= −ν
∫ t

0

〈
wn(τ) + α2Awn(τ), Aξ

〉
dτ

−
∫ t

0

〈
PnB̃(wn, wn + α2Awn)(τ), ξ

〉
dτ

+

∫ t

0

〈
Pn

(
δE(φn)

δφ
∇φn

)
, ξ

〉
dt

+ 〈(PnΣ)W (t), ξ〉
= J1(t) + J2(t) + J3(t) + J4(t).

We proceed as for Proposition 2.4 by estimating each term. For J1 we have, using Lemma 2.3 and
Theorem 2.1 (with k = 1), that there exists c1 > 0 such that

E
[
‖J1(·)‖2W θ,p([0,T ];R)

]
≤ c(θ, p)E

[∫ T

0

(
|wn(τ)|2 + α2|Awn(τ)|22

)
dτ

]
|Aξ|22 ≤ c1|ξ|2D(A)

In order to estimate J2, observe that by (iv) of Proposition 1.1 and Young inequality, we have〈
PnB̃(wn, wn + α2Awn), ξ

〉
(D(A)′,D(A))

d =
〈
B̃(wn, wn + α2Awn), Pnξ

〉
(D(A)′,D(A))

≤ c|wn|V
(
|wn|2 + α2|Awn|2

)
|ξ|D(A)

By Lemma 2.3 and the bound given by Theorem 2.1, we deduce that there exists c2 > 0 such that

E
[
‖J2(·)‖2W θ,p([0,T ];R)

]
≤ cE

[∫ T

0

|wn|2V
(
|wn|2 + α2|Awn|2

)2
dτ

]
|ξ|2D(A) ≤ c2|ξ|

2
D(A).

In order to estimate J3, let us obverse that we have, by Hölder and Sobolev inequalities ( which
works both in dimensions 2 and 3 )∣∣∣∣∣

〈
Pn

(
δE(φn)

δφ
∇φn

)
, ξ

〉
(D(A)′,D(A))

∣∣∣∣∣ ≤
∣∣∣∣Pn(δE(φn)

δφ

)∣∣∣∣
2

|∇φn|3 |ξ|6

≤
∣∣∣∣δE(φn)

δφ

∣∣∣∣
2

‖∇φn‖H1(Q) ‖ξ‖H1(Q)

≤ c

∣∣∣∣δE(φn)

δφ

∣∣∣∣
2

‖φn‖H2 |ξ|D(A)

≤ c

∣∣∣∣δE(φn)

δφ

∣∣∣∣
2

(1 + E(φn))|ξ|D(A).

In the last inequality we used (1.3). Then, by Lemma 2.3 and the estimates in Theorem 2.1 (with
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k = 3), we deduce that there exists c3 > 0 such that

E
[
‖J3(·)‖2W θ,p([0,T ];R)

]
≤ E

∫ T

0

∣∣∣∣∣
〈
Pn

(
δE(φn)

δφ
∇φn

)
, ξ

〉
(D(A)′,D(A))

∣∣∣∣∣
2

dτ


≤ cE

[∫ T

0

∣∣∣∣δE(φn)

δφ

∣∣∣∣2
2

(1 + E(φn))2dτ

]
|ξ|2D(A)

≤ c3|ξ|2D(A).

The term J4 is treated as done in (2.8). Then, provided θ < 1/2, there exists c4 > 0 such that

E

[∫ T

0

∫ T

0

|(PnΣ)(W (t)−W (s)|p2
|t− s|1+θp

dsdt

]
≤ c(Tr[Σ∗Σ])

p
2

∫ T

0

∫ T

0

|t− s|p

|t− s|1+θp
dsdt ≤ c3.

Finally, the results follows by taking into account the estimates obtained for J1, J2, J3, J4.

Proposition 2.5. For any T > 0, θ ∈]0, 1/2[, p ≥ 1 there exists c = c(T, θ, p) > 0 such that for
any n ∈ N

E
[
‖φn‖2W θ,p([0,T ];L2(Q))

]
≤ c.

Proof. For any n we have

φn(t) =

∫ t

0

πn (wn∇φn) dτ − γ
∫ t

0

πn

(
δE

δφ
(φn(τ))

)
dτ + (πnΞ)W ′(t) = K1(t) +K2(t) +K3(t).

We proceed by estimating each term. For K1 we have, using elementary inequalities∫ T

0

|πn (wn∇φn) |22dτ ≤ sup
0≤t≤T

|wn|∞
∫ T

0

|∇φn|22dτ ≤ T sup
0≤t≤T

|wn|2∞ +

∫ T

0

|∇φn|42dτ.

Then by Lemma 2.3 and Theorem 2.2 we deduce that there exists c1 > 0, independent by n such
that

E
[
‖K1(·)‖2W θ,p([0,T ];L2(Q))

]
≤ c(θ, 2)

∫ T

0

|πn (wn∇φn) |22dτ

≤ Tc(θ, 2)E
[

sup
0≤t≤T

|wn|2∞
]

+ c(θ, 2)E

[∫ T

0

|∇φn|42dτ

]

≤ Tc(θ, 2)E
[

sup
0≤t≤T

|wn|2∞
]

+ cE

[∫ T

0

(1 + E(φn(τ))) dτ

]
≤ c1.

In the last inequality we used (1.3).
For K2 we have, by Lemma 2.3 and Theorem 2.1, that for some c2 > 0, independent by n, it

holds

E
[
‖K2(·)‖2W θ,p([0,T ];L2(Q))

]
≤ E

[∥∥∥∥δEδφ (φn(τ))

∥∥∥∥2
L2([0,T ];L2(Q))

]
< c2

For the last term we have, by the gaussianity of Ξ(W ′(t) −W ′(s)) that there exists c = c(p)

such that E[|(πnΞ)(W ′(t)−W ′(s)|p2] ≤ c(Tr[Ξ∗Ξ])
p
2 |t− s|

p
2 . Then,

E

[∫ T

0

∫ T

0

|(πnΞ)(W ′(t)−W ′(s)|p2
|t− s|1+θp

dsdt

]
≤ c(Tr[Ξ∗Ξ])

p
2

∫ T

0

∫ T

0

|t− s|p

|t− s|1+θp
dsdt ≤ c3(2.8)

provided θ < 1/2. Taking into account the estimates on K1, K2, K3 we obtain the result.
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In which follows, we denote by L2
w([0, T ];D(A)′) the space L2([0, T ], D(A)′) endowed with the

weak L2 topology.

Lemma 2.6 (Tightness). For (w0, φ0) ∈ D(A) × L2(Q) with φ0 = −1 on ∂Q, T > 0, n ∈ N, let
(wn, φn) the solution of (2.1) in [0, T ]. Then, for any p > 2, ρ > 0, the laws of wn, n ∈ N are tight
in

C([0, T ];D(A−ρ)) ∩ Lp([0, T ];V ) ∩ L2
w([0, T ];D(A)′)

Moreover, for any σ > 0, the laws of φn, n ∈ N are tight in

C([0, T ]; H−σ(Q)) ∩ Lp([0, T ]; H2(Q)) ∩ L2
w([0, T ]; (H4(Q))′).

Proof. The classical interpolation inequality

‖w‖H1+ρ ≤ ‖w‖1−ρH1 ‖w‖ρH2 , ρ ∈ [0, 1]

implies
‖w‖p

H
1+ 2

p
≤ ‖w‖p−2H1 ‖w‖2H2 , p ∈ [2,∞[.

Then, by Theorem 2.1 and Proposition 2.4 implies that (wn)n is bounded in

Lp
(

Ω; Lp([0, T ]; H1+ 2
p )
)
∩ L2

(
Ω; L2([0, T ];D(A))

)
∩ L2

(
Ω;W θ,p([0, T ]; H)

)
for any p ∈]2,∞[ and θ < 1/2 such that θp > 1. Taking into account Theorem [19, Theorem 2.1
and Theorem 2.2], for any p ∈]2, <∞[ and θ < 1/2 such that θp > 1 the embeddings

W θ,p([0, T ]; H) ↪→ C([0, T ];D(A−ρ)), ρ > 0

Lp([0, T ]; H1+ 2
p ) ∩W θ,p([0, T ]; H) ↪→ Lp([0, T ]; V)

are compact. Moreover, we have that L2([0, T ];D(A)) is compactly embedded in the complete
metrizable space L2

w([0, T ];D(A)′). Then, the result follows by Prokhorov’s theorem.
In order to show the tightness of the laws of φn, notice that by (1.8) there exists c > 0,

independent by n, such that

E

[∫ T

0

|∆2φn|22dt

]
≤ cE

[∫ T

0

(∣∣∣∣δE(φn)

δφ

∣∣∣∣2
2

+ 1 + (E(φ))2

)
dt

]
.

Taking into account Theorem 2.1, this implies that the sequence (φn)n is uniformly bounded in
L2(Ω;L2([0, T ]; H4(Q))) and then the laws of φn, n ∈ N are tight in the complete metrizable space
L2
w([0, T ]; (H4(Q))′). By the interpolation formula ‖φ‖H1+2ρ ≤ ‖φ‖1−ρH2 ‖φ‖ρH4 we deduce that for

some c > 0
‖φ‖p

H
2+ 4

p
≤ ‖φ‖p−2H2 ‖φ‖2H4 ≤ c‖φ‖p−2H1

(
‖φ‖2H2 + |∆2φ|22

)
, p ≥ 2.

Moreover, by (1.3), (1.8), we get that for some c > 0, p′ ≥ 2 it holds

‖φn‖p
H

2+ 4
p
≤ c(1 + E(φn)p

′
)

(
1 +

∣∣∣∣δEδφ (φn)

∣∣∣∣2
2

)
.

Then, thanks to Theorem 2.1, we have that for any p ≥ 2 the sequence (φn)n is uniformly bounded
in Lp

(
Ω; Lp([0, T ]; H2+ 4

p )
)
, p ≥ 2.

Consequently, by Proposition 2.5 the sequence (φn)n is bounded in

Lp
(

Ω; Lp([0, T ]; H2+ 4
p )))

)
∩ L2

(
Ω;W θ,p([0, T ]; L2(Q))

)
∩ L2

(
Ω; L2([0, T ]; H4(Q))

)
θ <

1

2
, p <∞,

endowed with the conditions φn = −1 on ∂Q, ∆φn = 0 on ∂Q. Since by [19, Theorem 2.1 and
Theorem 2.2]) we have that the embeddings

W θ,p([0, T ]; L2(Q)) ↪→ C([0, T ]; H−σ(Q)), σ > 0

Lp([0, T ]; H2+ 4
p (Q)) ∩W θ,p([0, T ]; L2(Q)) ↪→ Lp([0, T ]; H2(Q)), θp > 2

are compact, the result follows by Prokhorov’s Theorem.
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Theorem 2.7. Let (w0, φ0) ∈ D(A) × L2(Q) with φ0 = −1 on ∂Q. Then, there exists a proba-
bility space (Ω̃, F̃ , P̃), two cylindrical Wiener processes W̃ (t), Z̃(t) defined on (Ω̃, F̃ , P̃), stochastic
processes

w ∈ C([0, T ];D(A−ρ)) ∩ Lp([0, T ]; V) ∩ L2([0, T ];D(A)), ρ > 0,

φ ∈ C([0, T ]; H−σ(Q)) ∩ Lp([0, T ]; H2(Q)) ∩ L2([0, T ]; H4(Q)), σ > 0,

ζ ∈ L2([0, T ]; L2(Q))

and subsequences ( for simplicity they are not relabeled ) such that for any p < ∞ and P̃-a.s. the
solution (wn, φn) of problem (2.1) with W̃ (t) and Z̃(t) instead of W (t), Z(t) satisfies

(i) wn → w strongly in C([0, T ];D(A−ρ)), ρ > 0

(ii) wn → w strongly in Lp([0, T ]; V), p ∈ [1,∞[

(iii) wn → w weakly in L2([0, T ];D(A))

(iv) φn → φ strongly in C([0, T ]; H−σ(Q)), σ > 0

(v) φn → φ strongly in Lp([0, T ]; H2), p ∈ [1,∞[

(vi) ∆2φn → ∆2φ weakly in L2([0, T ]; L2(Q))

(vii)
δE(φn)

δφ
→ ζ weakly in L2([0, T ]; L2(Q))

(viii) f(φn)→ f(φ) strongly in L2([0, T ]; L2(Q))

Proof. Taking into account Lemma (2.6), by Skorohod representation theorem and by a diagonal
extraction argument, there exists a probability space (Ω̃, F̃ , P̃), two cylindrical Wiener processes
W̃ (t), Z̃(t) defined on (Ω̃, F̃ , P̃), two stochastic processes w, φ such that the convergence conditions
in (i)–(vi) hold.

(vii). By Theorem 2.1, the sequence
δE(φn)

δφ
are bounded in L2(Ω; L2([0, T ]; L2(Q))). Then, by

arguing as for the previous point, the result follows by Prokhorov theorem and Skorohod theorem.
(viii) By the expression of f(φn) it is sufficient to show that that P-almost surely ∆φn → ∆φ

and φ3n → φ3 strongly in Lp([0, T ]; L2(Q)). Indeed, the two limits follows by (v) and by standard
Sobolev embedding results.

3 Proof ot Theorem 0.3

3.1 Existence
By Theorem 2.7 we know that there exist subsequences (wn)n, (φn)n converging P̃-a.s. to processes
(w, φ) ∈ L2(Ω; L2([0, T ];D(A)))× L2(Ω; L2([0, T ]; H2(Q))).

The rest of the proof will be splitted in several lemma : in Lemma 3.1, we will show that the
processes (w, φ) satisfied (0.4). Then we will show that w, φ fulfill the definition 1.2 of a solution
for the abstract problem.

Lemma 3.1. Under hypothesis of Theorem 0.3, we have that (0.4) hold.

Proof. Let us show the first bound of (0.4). Let us notice that by the definition of the norm in
D(Aρ) it holds ‖w‖D(A−ρ) ≤ ‖w‖H, for all ρ > 0. By Theorem 2.7,

sup
t∈[0,T ]

‖w(t)‖D(A−ρ) = lim
n→∞

(
sup
t∈[0,T ]

‖wn(t)‖D(A−ρ)

)
≤ lim inf

n→∞

(
sup
t∈[0,T ]

‖wn(t)‖H

)
By Fatou’s lemma and Theorem 2.2 we deduce that for any k > 0 there exists c > 0 depending on
k, T, w0, φ0 such that

Ẽ

[
sup
t∈[0,T ]

‖w‖kH

]
≤ lim inf

n→∞
Ẽ

[
sup
t∈[0,T ]

‖wn‖kH

]
≤ c.
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With a similar argument it can be shown that for any k > 0 there exists c > 0 depending on
k, T, w0, φ0 such that

Ẽ

[
sup
t∈[0,T ]

|φ|k2

]
≤ lim inf

n→∞
Ẽ

[
sup
t∈[0,T ]

|φn|k2

]
≤ c

which implies that the first bound in (0.4) holds. Let us show the second bound. Notice that by
Theorem 2.7 we have, P̃-a.s., that the limit (‖wn(t)‖V + ‖φn(t)‖H2)∧M → (‖w(t)‖V + ‖φ(t)‖H2)∧
M holds in Lp([0, T ]), for all p ≥ 1 and M > 0. Then, by Lemma 3.3 we have that the limit

lim
n→∞

((‖wn(t)‖V + ‖φn(t)‖H2)
p ∧M)

δE(φn(t))

δφ
= ((‖w(t)‖V + ‖φ(t)‖H2)

p ∧M)
δE(φ(t))

δφ

holds weakly in L2([0, T ]×Q), for any M > 0. Then, for any M > 0,

∫ T

0

(
(‖w(t)‖V + ‖φ(t)‖H2)

2p ∧M2
) ∣∣∣∣δE(φ(t))

δφ

∣∣∣∣2
2

dt

≤ lim inf
n→∞

∫ T

0

(
(‖wn(t)‖V + ‖φn(t)‖H2)

2p ∧M2
) ∣∣∣∣δE(φn(t))

δφ

∣∣∣∣2
2

dt

Letting M →∞, by monotone convergence we obtain∫ T

0

(‖w(t)‖V + ‖φ(t)‖H2)
2p

∣∣∣∣δE(φ(t))

δφ

∣∣∣∣2
2

dt ≤ lim inf
n→∞

∫ T

0

(‖wn(t)‖V + ‖φn(t)‖H2)
2p

∣∣∣∣δE(φn(t))

δφ

∣∣∣∣2
2

dt

Finally, by Fatou’s Lemma we get

Ẽ

[∫ T

0

(|w(t)|V + |φ(t)|H2)
2p

∣∣∣∣δE(φ(t))

δφ

∣∣∣∣2
2

dt

]

≤ lim inf
n→∞

Ẽ

[∫ T

0

(‖wn(t)‖V + ‖φn(t)‖H2)
2p

∣∣∣∣δE(φn(t))

δφ

∣∣∣∣2
2

dt

]
≤ c

where c > 0 is given by Theorem 2.1. By similar arguments we can show that there exists c > 0
such that

Ẽ

[∫ T

0

(‖w(t)‖V + ‖φ(t)‖H2)
2p (|∇w|22 + α2|Aw|22|

)
dt

]
≤ c.

To conclude the proof, it is sufficient to notice that thanks to (1.4) there exists c > 0 such that
E(φ) ≤ c(1 + |φ(t)|8H2).

Lemma 3.2. Under hypothesis of Theorem 0.3, the limit processes (w, φ) solve (0.3) in the sense
of Definition 1.2

Proof. Let us first show that (w, φ) solve (0.3). Since wn, φn solves (2.1), it is sufficient to show
that the right-hand side of (2.1) converges to the right-hand side of (0.3).

Let ξ ∈ L2([0, T ];D(A)). By Theorem 2.7, (iii) we have

lim
n→∞

∫ T

0

〈
wn + α2Awn, ξ(t)

〉
dt =

∫ T

0

〈
w + α2Aw, ξ(t)

〉
dt

and

lim
n→∞

ν

∫ T

0

〈
∫ t

0

(wn(τ) + α2Awn(τ))dτ,Aξ(t)〉dt = lim
n→∞

ν

∫ t

0

∫ t

0

〈w(τ) + α2Aw(τ), Aξ(t)〉dτdt

= ν

∫ T

0

〈
∫ t

0

(w(τ) + α2Aw(τ))dτ,Aξ(t)〉dt.
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Observe that by Proposition 1.1 (ii) it holds∣∣∣∣∣
∫ T

0

∫ t

0

〈
B̃(w(τ), u(τ)), ξ(t)

〉
dτdt

∣∣∣∣∣ ≤
(∫ T

0

|w(τ)|2V dτ

) 1
2
(∫ T

0

|u(τ)|22dτ

) 1
2
(∫ T

0

|ξ(t)|2D(A)dt

) 1
2

.

This implies that the trilinear form

L2([0, T ];V )× L2([0, T ]; L2(Q))× L2([0, T ];D(A))→ R

(w, u, ξ) 7→
∫ T

0

∫ t

0

〈
B̃(w(τ), u(τ)), ξ(t)

〉
dτdt

is continuous. Since by Theorem 2.7 we have that P-a.s. wn → w strongly in L2([0, T ]; V),
that wn + α2Awn → w + α2Aw weakly in L2([0, T ]; L2(Q)) and clearly Pnξ → ξ strongly in
L2([0, T ];D(A)), we deduce that

lim
n→∞

∫ T

0

〈∫ t

0

PnB̃(wn, wn + α2Awn)(τ)dτ, ξ(t)

〉
(D(A)′,D(A))

dt

= lim
n→∞

∫ T

0

∫ t

0

〈
B̃(wn, wn + α2Awn)(τ), Pnξ(t)

〉
(D(A)′,D(A))

dτdt

=

∫ T

0

∫ t

0

〈
B̃(w,w + α2Aw)(τ), ξ(t)

〉
(D(A)′,D(A))

dτdt

as n→∞. Finally, it is easy to see that P̃-a.s. it holds

lim
n→∞

∫ T

0

〈∫ t

0

(PnΣ)dW̃ (τ), ξ(t)

〉
dt =

∫ T

0

〈∫ t

0

ΣdW̃ (τ), ξ(t)

〉
dt.

In order to complete the proof, we need the following

Lemma 3.3. We have, P̃-a.s.

lim
n→∞

δE(φn(t))

δφ
=
δE(φ(t))

δφ
weakly in L2([0, T ]; L2(Q))

and
lim
n→∞

Pn

(
δE(φn(t))

δφ

)
=
δE(φ(t))

δφ
weakly in L2([0, T ]; L2(Q)).

Proof. Let us prove the first limit. By (vii) of Theorem 2.7 we have to show that ζ =
δE(φ(t))

δφ
.

Let g ∈ C∞0 ([0, T ]×Q;R). We shall show that

lim
n→∞

∫ T

0

〈
δE(φn(t))

δφ
, g(t)

〉
dt =

∫ T

0

〈
δE(φ(t))

δφ
, g(t)

〉
dt.

By the expression (1.2) of
δE(φn)

δφ
we have to identify each limit. Indeed, if we have

∫ T

0

〈
∆2φn(t), g(t)

〉
dt→

∫ T

0

〈
∆2φ(t), g(t)

〉
dt

by (vi) of Theorem 2.7. Similarly,

lim
n→∞

∫ T

0

〈
∆(φ3n(t)− φn(t)), g(t)

〉
dt =

∫ T

0

〈
φ3n(t)− φn(t),∆g(t)

〉
dt

=

∫ T

0

〈
φ3(t)− φ(t),∆g(t)

〉
dt =

∫ T

0

〈
∆(φ3(t)− φ(t)), g(t)

〉
dt
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thanks to (v) of Theorem 2.7. Moveover, by Theorem 2.7, (v), (viii), the limit

lim
n→∞

∫ T

0

〈
(3φ3n − 1)f(φn), g(t)

〉
dt =

∫ T

0

〈
(3φ3 − 1)f(φ), g(t)

〉
dt

holds. For the last term, we have to show that

lim
n→∞

∫ T

0

B(φn(t)) 〈f(φn(t)), g(t)〉dt =

∫ T

0

B(φn(t)) 〈f(φ(t)), g(t)〉dt (3.1)

Since B(φn) =
1

2
|∇φn|22 +

1

4
|φ2n − 1|22, by (v) of Theorem 2.7 we deduce that B(φn) → B(φ) in

Lp([0, T ];R), for any p ∈ [1,∞[. On the other side, by (v) of Theorem 2.7 we have f(φn)g → f(φ)g
as n→∞ in Lp([0, T ];R). Then, we deduce that (3.1) holds.

The second limit is obvious since for any g ∈ C∞0 ([0, T ]×Q;R), Png → g strongly in L2([0, T ]; L2(Q))
and then

lim
n→∞

∫ T

0

〈
Pn

(
δE(φn(t))

δφ

)
, g(t)

〉
dt = lim

n→∞

∫ T

0

〈
δE(φn(t))

δφ
, Png(t)

〉
dt

=

∫ T

0

〈
δE(φ(t))

δφ
, g(t)

〉
dt.

By the previous lemma and by (vii) of Theorem 2.7 we get that∫ t

0

Pn

(
δE(φn(τ))

δφ

)
∇φn(τ)dτ →

∫ t

0

δE(φ(τ))

δφ
∇φ(τ)dτ

strongly in L2([0, T ]; L2(Q)). Then, in particular, the convergence holds weakly in L2([0, T ];D(A)).
So, we have show that w solves the first equation of (0.3). Let us show that φ solve the second
one. Let us observe that by Theorem 2.7, φn → φ strongly in Lp([0, T ]; H2(Q)). Moreover, since
wn → w strongly in Lp([0, T ]; V), it easy to show that the limit

lim
n→∞

∫ t

0

πn (wn∇φn) (τ)dτ =

∫ t

0

(w∇φn)(τ)dτ

holds in L2([0, T ]; L2(Q)). Finally, it is clear that

lim
n→∞

∫ T

0

〈∫ t

0

(πnΞ)dZ̃(τ), ξ(t)

〉
dt =

∫ T

0

〈∫ t

0

ΞdZ̃(τ), ξ(t)

〉
dt.

holds P̃-a.s. Then, (w, φ) is a solution of (0.3).
It remains to verify that (w, φ) satisfy all the other conditions of Definition 1.2. Continuity of
w + α2Aw, φ. Notice that since w + α2Aw, φ solves the stochastic differential equation (1.1),
then w + α2Aw ∈ L2(Ω; C([0, T ];D(A)′)) and φ ∈ L2(Ω; C([0, T ]; L2(Q))). The fact that φ, w are
adapted to the filtration Ft is obvious, been φ, w a.s. limit of adapted processes.

It remains to show that φ, w are continuous in mean square. Indeed, by Itô formula 2.2 we
deduce,

E
[
|wn(t)− wn(t0)|22 + α2|∇(wn(t)− wn(t0))|22

]
≤ E

∫ t

t0

ν(|∇wn|22 + α2|Awn|22)ds

+E
∫ t

t0

∣∣∣∣δE(φn)

δφ

∣∣∣∣
2

|∇φn|2 |wn|∞ds+
1

2
Tr[(πnΣ)∗(I + α2A)−1(πnΣ)](t− t0)

≤ E
∫ t

t0

ν(|∇wn|22 + α2|Awn|22)ds

+E
∫ t

t0

∣∣∣∣δE(φn)

δφ

∣∣∣∣
2

|∇φn|2 |wn|V ds+
1

2
Tr[(Σ∗(I + α2A)−1Σ](t− t0).
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Notice that we have used the property
〈
B̃(w,w + α2Aw), w

〉
= 0. Moreover, by Theorem 2.7 and

the bounds in (0.4) we can apply Fatou’s Lemma to get, as n→∞

E
[
|w(t)− w(t0)|22 + α2|∇(w(t)− w(t0))|22

]
≤ E

∫ t

t0

ν(|∇w|22 + α2|Aw|22)ds

+E
∫ t

t0

∣∣∣∣δE(φ)

δφ

∣∣∣∣
2

|∇φ|2 |w|V ds+
1

2
Tr[(Σ∗(I + α2A)−1Σ](t− t0).

Then, the continuity in mean square for w follows. In a similar way (we omit the calculus, which
are standard) we get the continuity in mean square for the process φ.

Corollary 3.4. Under hypothesis of Theorem 0.3, we have

lim
n→∞

∫ t

0

Pn

(
δE(φn(τ))

δφ

)
dτ =

∫ t

0

δE(φ(τ))

δφ
dτ in Lp([0, T ]; L2(Q)), p ∈ [1,∞[.

3.2 Uniqueness
Theorem 3.5. Under Hypothesis 0.1 for any initial condition (w0, φ0) ∈ D(A)×L2(Q) there exists
a unique solution (w, φ) to equation (0.2) such that for any T > 0 and P-a.s.∫ T

0

(
|w(t)|2V +

∣∣∣∣δEδφ (φ(t))

∣∣∣∣2
2

+ |φ|8H2 + |∆2φ|22

)
dt <∞ (3.2)

Since the the proof of this result is quite the same as in [34], for the reader’s convenience we
only give here the main ideas.

Proof. By Theorem 2.7 and Theorem 3.1, there exists at least a solution (ω, φ) satisfying (3.2).
As usual, consider two solutions of the system (w1, φ1) and (w2, φ2) with the expected regularity
stated before, and consider the difference (w, φ) = (w1, φ1)− (w2, φ2) between these two solutions.
We shall show that (w1, φ1) = (w2, φ2) on the full measure set{

2∑
i=1

∫ T

0

(
|wi(t)|2V +

∣∣∣∣δEδφ (φi(t))

∣∣∣∣2
2

+ |φi|8H2 + |∆2φi|22

)
dt <∞

}
. (3.3)

As in [34], we write
δE(φ)

δφ
(φ) = M(φ) +N(φ),

where
M(φ) = ∆2φ−∆φ+ φ

N(φ) =
δE

δφ
(φ)−M(φ).

Let us set G(φ) = |∆φ|22 + |∇φ|22 + |φ|22. The proof of the following lemma is easy and it is left to
the reader.

Lemma 3.6. The function G(φ) defines a norm equivalent to the H2(Q) norm. That is, there
exists C > 0 such that it holds

1

C
‖φ‖2H2 ≤ G(φ) ≤ C‖φ‖2H2 , ∀φ ∈ H2(Q)

Moreover, it holds∫ T

0

G(φ)dt =

∫ T

0

〈M(φ), φ〉dt, ∀φ ∈ L2([0, T ]; H4(Q)) ∩ {φ : φ = ∆φ = 0 on ∂Q}.
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For any ṽ ∈ L2([0, T ];D(A)), the couple (w, φ) satisfies

d
〈
w + α2Aw, ṽ

〉
=
(〈
−νA(w + α2Aw), ṽ

〉
+
〈
−B̃(w1, w1 + α2Aw1) + B̃(w2, w2 + α2Aw2), ṽ

〉
+ 〈M(φ1),∇φ1 · ṽ〉 − 〈M(φ2),∇φ2 · ṽ〉+ 〈N(φ1), φ1 · ṽ〉 − 〈N(φ2),∇φ2 · ṽ〉) dt in [0, T ]×Q,

dφ = (−w1 · ∇φ1 + w2 · ∇φ2 −M(φ)−N(φ1) +N(φ2)) dt in [0, T ]×Q,
w(0) = 0 in Q,
φ(0) = 0 in Q.

Let us look at the second equation. By multiplying with M(φ) and integrating over [0, t] ×Q we
find

1

2
G(φ(t)) = −

∫ t

0

〈w1 · ∇φ1 − w2 · ∇φ2,M(φ)〉ds−γ
∫ t

0

(〈
δE(φ1)

δφ
− δE(φ2)

δφ
,M(φ)

〉)
ds (3.4)

Here we used the fact that E(φi) < ∞ implies φi ∈ H2(Q) ( see (1.3) ). Moreover, notice that
φ = ∆φ = 0 on ∂Q and (3.2) holds, then we can apply the integration by parts in Lemma 3.6.

Since wi ∈ L2([0, T ];D(A)), we can set ṽ = w in the first equation. By integrating over [0, t]×Q
we find

1

2
(|w(t)|22 + α2|∇w(t)|22) + ν

∫ t

0

(
|∇w|22 + α2|∆w|22

)
ds

=

∫ t

0

(〈
−B̃(w1, w1 + α2Aw1) + B̃(w2, w2 + α2Aw2), w

〉)
ds

+

∫ t

0

(〈
δE(φ1)

δφ
∇φ1 −

δE(φ2)

δφ
∇φ2, w

〉)
ds

=

∫ t

0

〈
B̃(w,w + α2Aw), w2

〉
ds+

∫ t

0

(〈M(φ1)∇φ1 −M(φ2)∇φ2, w〉) ds

+

∫ t

0

(〈N(φ1)∇φ1 −N(φ2)∇φ2, w〉) ds

(3.5)

Here we have used the properties of B̃ ( see Proposition 1.1 ) which yield〈
B̃(w1, w1 + α2Aw1), w

〉
−
〈
B̃(w2, w2 + α2Aw2, w

〉
= −

〈
B̃(w,w + α2Aw), w2

〉
.

By adding (3.5) and (3.4) we get

1

2
(|w(t)|22+α2|∇w(t)|22+|G(φ(t))|22)+ν

∫ t

0

(
|∇w|2 + α2|∆w|22

)
ds+γ

∫ t

0

|M(φ)|22ds =

∫ t

0

F(w, φ)ds

where

F(w, φ) =
〈
B̃(w,w + α2Aw), w2

〉
+ 〈M(φ1)∇φ1 −M(φ2)∇φ2, w〉

− 〈w1 · ∇φ1 − w2 · ∇φ2,M(φ)〉+ 〈N(φ1)∇φ1 −N(φ2)∇φ2, w〉
−γ 〈N(φ1)−N(φ2),M(φ)〉

As in [34], we have to estimate each term of F(w, φ). A key role is played by the following result,
which is similar to Lemma 5.2 of [34]. The main difference is that in [34] the solution φ belongs to
C0([0, T ]; H2). In our case, we are able to prove only φ ∈ Lp([0, T ]; H2).

Lemma 3.7. Let φ1, φ2 ∈ H2(Q) such that φi + 1 = ∆φi = 0 on ∂Q, i = 1, 2. Then there exists
c > 0, independent by φ1, φ2 such that

|N(φ1)−N(φ2)|2 ≤ c
(
1 + ‖φ1‖6H2 + ‖φ2‖6H2

)
‖φ1 − φ2‖H2 . (3.6)
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Proof. By (1.2) we can write

N(φ) = −∆φ3 + 2∆φ+ 3φ2f(φ)− f(φ)− φ+M1(A(φ)− a) +M2(B(φ)− b)f(φ).

Then,

|N(φ1)−N(φ2)|2 ≤ |∆(φ31 − φ32)|2 + 2|∆(φ1 − φ2)|2 + 3|φ21f(φ1)− φ22f(φ2)|2 +

+(1 +M2b)|f(φ1)− f(φ2)|2 + |φ1 − φ2|2 +M1|A(φ1)−A(φ1)|2 +

+M2|B(φ1)f(φ1)− B(φ2)f(φ2)|2 = I1 + . . .+ I7.

Let us proceed by estimating each term. For I1, we set φ̃ = φ21 + φ1φ2 + φ22. . Using Poincaré
inequality, it holds |φi|∞ ≤ (1 + CP |φi|H1), i = 1, 2 where CP > 0 is the Poincaré constant. We
deduce that there exists c > 0 such that

|φ̃|∞ ≤
2∑

i,j=1

|φi|∞|φj |∞ ≤
2∑

i,j=1

(1 + CP‖φi‖H1)(1 + CP‖φj‖H1) ≤ c(1 + ‖φ1‖2H1 + ‖φ2‖2H1). (3.7)

Similarly, since |∇φ̃| ≤
2∑

i,j=1

|φi||∇φj | by Poincaré inequality and the Sobolev embedding H1(Q) ⊂

L4(Q) there exists c > 0 such that

|∇φ̃|4 ≤
2∑

i,j=1

|φi|∞|∇φj |4 ≤
2∑

i,j=1

(1 + CP‖∇φi‖H1)‖∇φj‖H1

≤
2∑

i,j=1

(1 + CP‖φi‖H2)‖φj‖H2 ≤ (1 + ‖φ1‖2H2 + ‖φ2‖2H2). (3.8)

Moreover, since ∆φ̃ =

2∑
i,j=1

i≤j

∆(φiφj) =

2∑
i,j=1

i≤j

((∆φi)φj +∇φi∇φj + φi(∆φj)), still using the Poincaré

inequality and the Sobolev embedding H1(Q) ⊂ L4(Q) we get

|∆φ̃|2 ≤
2∑

i,j=1

i≤j

(|∆φi|2|φj |∞ + |∇φi|4|∇φj |4 + |φi|∞|∆φj |2)

≤
2∑

i,j=1

i≤j

(|∆φi|2(CP‖φj‖H1 + 1) + ‖φi‖H2‖φj‖H2 + (CP‖φi‖H1 + 1)|∆φj |2)

≤ c(1 + ‖φ1‖2H2 + ‖φ2‖2H2) (3.9)

where c > 0 is independent by φ1, φ2. By taking in mind (3.7),(3.8), (3.9) there exists c > 0 such
that

I1 = |∆(φ31 − φ32)|2 = |∆(φφ̃)|2
≤ |(∆φ)φ̃|2 + 2|∇φ · ∇φ̃|2 + |φ(∆φ̃)|2
≤ |∆φ|2|φ̃|∞ + 2|∇φ|4|∇φ̃|4 + |φ|∞|∆φ̃|2
≤ c(1 + ‖φ1‖2H2 + ‖φ2‖2H2)(|∆φ|2 + |∇φ|4 + |φ|∞)

≤ c(1 + ‖φ1‖2H2 + ‖φ2‖2H2)‖φ1 − φ2‖H2 .

In the last inequality we have used the Sobolev embedding H1(Q) ⊂ L4(Q) and the Poincaré
inequality |φ1 − φ2|∞ ≤ CP |φ1 − φ2|H1 . For I2, we have clearly I2 ≤ c|φ1 − φ2|H2 . For I3 we can
write

I3 = 3|φ21f(φ1)− φ22f(φ2)|2 ≤ 3|φ21(f(φ1)− f(φ2))|2 + 3|(φ21 − φ22)f(φ2)|2 = J1 + J2.
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For J1, we have

J1 ≤ 3|φ1|2∞|f(φ1)− f(φ2))|2 ≤ 3|φ1|2∞(|∆(φ1 − φ2)|2 + |φ31 − φ32|2 + |φ1 − φ2|2).

With a similar calculus done for I1, we have |φ31 − φ32|2 ≤ |φ̃|∞|φ1 − φ2|2. Then, using Poincaré
inequality there exists c > 0 such that |φ31 − φ32|2 ≤ c(1 + ‖φ1‖2H1 + ‖φ2‖2H1)|φ1 − φ2|2. Then, for
some c > 0 independent by φ1, φ2 we obtain

J1 ≤ c(1 + ‖φ1‖2H1)(1 + ‖φ1‖2H1 + ‖φ2‖2H1)‖φ1 − φ2‖H2 .

For J2, since H1(Q) ⊂ L6(Q) we have

J2 ≤ 3|φ1 − φ2|∞|φ1 + φ2|∞
(
|∆φ2|2 + |φ2|36 + |φ2|2

)
≤ c‖φ1 − φ2‖H1(1 + ‖φ1‖H1 + ‖φ2‖H1)

(
‖φ2‖H2 + ‖φ2‖3H1 + |φ2|2

)
Finally, using Young inequality repeatedly, we find that for some c > 0 it holds

I3 ≤ c
(
1 + ‖φ1‖6H2 + ‖φ2‖6H2

)
‖φ1 − φ2‖H2 .

For I4, we can perform a calculus as done for J1 to obtain, for some c > 0

I4 = (1 +M2b)|f(φ1)− f(φ2)|2 ≤ c(1 + ‖φ1‖2H1 + ‖φ2‖2H1)‖φ1 − φ2‖H2 .

Clearly, for I5 and I6 we have

I5+I6 = |φ1−φ2|2+M1|A(φ1)−A(φ2)|2 ≤ |φ1−φ2|2+M1|Q|1/2|A(φ1−φ2)| ≤ (1+M1|Q|)|φ1−φ2|2.

For I7,

I7 = M2|B(φ1)f(φ1)− B(φ2)f(φ2)|2
≤ B(φ1)|f(φ1)− f(φ1)|2 + |B(φ1)− B(φ2)||f(φ2)|2
= K1 +K2

For K1, since B(φ) =
1

2
|∇φ|22 +

1

4
|φ2 − 1|22 we have

B(φ1) ≤ 1

2
|∇φ1|22 +

1

4
(|φ1|44 + |Q|) ≤ 1

2
|∇φ1|22 +

1

4
(‖φ1‖4H1 + |Q|).

Then, there exists c > 0 such that B(φ1) ≤ c(1 + ‖φ1‖4H1). In order to estimate |f(φ1) − f(φ2)|2
we can argue as done before for the term J1 to obtain

|f(φ1)− f(φ2)|2 ≤ c(1 + ‖φ1‖2H1 + ‖φ2‖2H1)‖φ1 − φ2‖H2

Then, by using Young inequality repeatedly, there exists c > 0 such that

K1 ≤ c(1 + ‖φ1‖6H1 + ‖φ2‖6H1)‖φ1 − φ2‖H2 .

Before consider K2, let us observe that by the expression of B(φ1) we have

|B(φ1)− B(φ2)| ≤ 1

2
|〈∇(φ1 − φ2),∇(φ1 + φ2)〉|+ 1

4

∣∣〈φ1 − φ2, (φ1 + φ2)(φ21 + φ22 − 2)
〉∣∣

≤ 1

2
‖φ1 − φ2‖H1(‖φ1‖H1 + ‖φ2‖H1) +

1

4
|φ1 − φ2|2|(φ1 + φ2)(φ21 + φ22 − 2)|2.

By Young inequality ab2 ≤ a2/3 + 2b3/3 we get (φ1 + φ2)(φ21 + φ22 − 2) ≤ 2φ31 + 2φ32 + φ1 + φ2.
Therefore, the last expression is bounded by

|B(φ1)− B(φ2)| ≤ ‖φ1 − φ2‖H1

(
1

2
‖φ1 + φ2‖H1 +

|Q|1/2

4

(
|φ1|3∞ + 2|φ2|3∞ + |φ1|2 + |φ2|∞

))
.
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Since by Poincaré inequality we have |φi|∞ ≤ |φi + 1|∞ + 1 ≤ CP‖φi‖H1 + 1, we deduce that there
exists c > 0 such that

|B(φ1)− B(φ2)| ≤ c‖φ1 − φ2‖H1

(
1 + ‖φ1‖3H1 + 2‖φ2‖3H1

)
Moreover, since f(φ) = −∆φ + φ(φ2 − 1) and the continuous embedding H1(Q) ⊂ L6(Q) holds,
there exists c > 0 such that

|f(φ2)|2 ≤ |∆φ2|2 + |φ2|36 + |φ2|2 ≤ ‖φ2‖H2 + |φ2|3H1 + |φ2|2 ≤ c(1 + ‖φ2‖3H2)

By the previous results, we deduce that for K2 we have

K2 ≤ c‖φ1 − φ2‖H1

(
1 + ‖φ1‖3H1 + 2‖φ2‖3H1

)
(1 + ‖φ2‖3H2)

Then, for some c > 0 independent by φ1, φ2 we obtain the bound

K2 ≤ c‖φ1 − φ2‖H1

(
1 + ‖φ1‖6H2 + |φ2|6H2

)
.

Taking into account the estimates on K1 and K2 we get that for some c > 0 we have

I7 ≤ c
(
1 + ‖φ1‖6H2 + ‖φ2‖6H2

)
‖φ1 − φ2‖H2 .

Finally, taking into account the estimates on I1, . . . , I7, we get that there exits c > 0 such that
(3.6) holds.

By arguing as in [34] (see equations (60)–(67)), the term F(w, φ) is bounded by

F(w, φ) ≤ Cε̃‖∇w‖2H‖Aw2‖2H + ε̃‖w + α2Aw‖2H
+ε̃‖w‖2V + Cε̃|M(φ1)|22‖φ‖2H2

+ε̃|M(φ)|22 + Cε̃‖w1‖2V‖φ‖2H2

+ε̃‖w‖2V + Cε̃|N(φ1)|22‖φ‖2H2

+ε̃‖w‖2V + Cε̃|N(φ1)−N(φ2)|22‖φ2‖2H2

+ε̃|M(φ)|22 + Cε̃|N(φ1)−N(φ2)|22,

where ε̃ > 0 can be chosen arbitrarly and Cε̃ > 0 depends only on ε̃ > 0. By (3.6) there exists
c > 0 such that

F(w, φ) ≤ 3ε̃‖w‖2V + 2ε̃|M(φ)|22 + ε̃‖w + α2Aw‖2H + Cε̃‖∇w‖2H‖Aw2‖2H
+
(
Cε̃(|M(φ1)|22 + ‖w1‖2V + |N(φ1)|22 + c(1 + ‖φ2‖2H2)(1 + ‖φ1‖6H2 + ‖φ2‖6H2)

)
‖φ‖2H2 .

Since |N(φ)|2 ≤
∣∣∣∣δEδφ (φ)

∣∣∣∣
2

+ |M(φ)|2 and |M(φ)|2 ≤ c(|∆2φ|2 + ‖φ‖H2), there exists c1, c2 > 0,

depending only on ε̃ such that

F(w, φ) ≤ 3ε̃‖w‖2V + 2ε̃|M(φ)|22 + ε̃‖w + α2Aw‖2H + Cε̃‖∇w‖2H‖Aw2‖2H

+c1

(
|∆2φ1|22 + ‖w1‖2V +

∣∣∣∣δEδφ (φ1)

∣∣∣∣2
2

+ 1 + ‖φ1‖8H2 + ‖φ2‖8H2

)
‖φ‖2H2

≤ 3ε̃‖w‖2V + 2ε̃|M(φ)|22 + ε̃‖w + α2Aw‖2H

+c2

(
|∆2φ1|22 + ‖w1‖2V +

∣∣∣∣δEδφ (φ1)

∣∣∣∣2
2

+ ‖φ1‖8H2 + ‖φ2‖8H2 + 1

)
(G(φ) + ‖w‖2H + α2‖∇w‖2H)

Consequently, for ε̃ small enough, it holds

1

2

(
|w(t)|22 + α2|∇w(t)|22 +G(φ)(t)

)
+
γ

2

∫ T

0

|M(φ)|22dt+
ν

2

∫ T

0

(
|∇w(t)|22 + α2|Aw(t)|22

)
dt

≤ 1

2

∫ T

0

H(t)
(
|w(t)|22 + α2|∇w(t)|22 +G(φ)(t)

)
dt.
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Here, H (up to a multiplicative constant) is explicitly given by

|∆2φ1|22 + ‖w1‖2V +

∣∣∣∣δEδφ (φ1)

∣∣∣∣2
2

+ ‖φ1‖8H2 + ‖φ2‖8H2 + 1.

By the conditions (3.2), the quantity
∫ T

0

H(t) dt is bounded. Then we can apply Gronwall’s lemma

to deduce
|w(t)|22 + α2|∇w(t)|22 +G(φ)(t) ≤ 0

which implies (w1, φ1) = (w2, φ2) on the full measure set defined in (3.3).
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