Buried Object Detection from B-Scan Ground Penetrating Radar Data Using Faster-RCNN - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

Buried Object Detection from B-Scan Ground Penetrating Radar Data Using Faster-RCNN

Résumé

In this paper, we adapt the Faster-RCNN framework for the detection of underground buried objects (i.e. hyperbola reflections) in B-scan ground penetrating radar (GPR) images. Due to the lack of real data for training, we propose to incorporate more simulated radargrams generated from different configurations using the gprMax toolbox. Our designed CNN is first pre-trained on the grayscale Cifar-10 database. Then, the Faster-RCNN framework based on the pre-trained CNN is trained and fine-tuned on both real and simulated GPR data. Preliminary detection results show that the proposed technique can provide significant improvements compared to classical computer vision methods and hence becomes quite promising to deal with this kind of specific GPR data even with few training samples.
Fichier principal
Vignette du fichier
igarss2018gpr.pdf (812.42 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01969029 , version 1 (13-11-2019)

Identifiants

Citer

Minh-Tan Pham, Sébastien Lefèvre. Buried Object Detection from B-Scan Ground Penetrating Radar Data Using Faster-RCNN. IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, 2018, Valencia, Spain. ⟨10.1109/IGARSS.2018.8517683⟩. ⟨hal-01969029⟩
145 Consultations
504 Téléchargements

Altmetric

Partager

More