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ABSTRACT

In this paper, we adapt the Faster-RCNN framework for the
detection of underground buried objects (i.e. hyperbola re-
flections) in B-scan ground penetrating radar (GPR) images.
Due to the lack of real data for training, we propose to in-
corporate more simulated radargrams generated from differ-
ent configurations using the gprMax toolbox. Our designed
CNN is first pre-trained on the grayscale Cifar-10 database.
Then, the Faster-RCNN framework based on the pre-trained
CNN is trained and fine-tuned on both real and simulated
GPR data. Preliminary detection results show that the pro-
posed technique can provide significant improvements com-
pared to classical computer vision methods and hence be-
comes quite promising to deal with this kind of specific GPR
data even with few training samples.

Index Terms— Ground penetrating radar (GPR), object
detection, deep learning, Faster-RCNN

1. INTRODUCTION

Ground penetrating radar (GPR) is one of the most widely
used geophysical techniques applied to detect underground
buried objects such as landmines, pipes or archaeological ar-
tifacts, etc. A GPR system transmits an electromagnetic wave
into the ground at several spatial positions and receives the re-
flected signal to form the subsurface 2-D high resolution im-
age (a B-scan radargram). Within such images, underground
objects appear particularly as hyperbolic-shaped signatures.
The detection of buried objects can be therefore considered
as the detection of reflected hyperbolas in GPR images, which
has been tackled using image recognition and computer vision
techniques so far in the literature.

Different unsupervised and supervised approaches have
been investigated to perform automatic detection of buried
objects using GPR B-scan images. One of the most pop-
ular and classical approaches is the Hough transform (HT)
method. In [1, 2], the generalized HT and the randomized
HT were employed to find the hyperbola parameters which
are recorded within the Hough accumulator space. However,
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most of these Hough-based approaches are still limited to the
fact that the handling and discretization of a great number
of parameters could lead to a huge computational complexity.
In [3,4], the template matching and the dictionary-based tech-
niques were used to determine hyperbola signatures. These
methods work based on the correlation score between each
GPR image patch and the template or the dictionary model.
They again require many parameters for the setup and def-
inition of different templates or dictionary models. Some
other methods were proposed using supervised pattern recog-
nition approach such as the HOG features [5], the Viola-Jones
learning algorithm based on Haar-like features [6]. However,
their results still involve several unexpected false alarms and
missed detection targets. Thus, the detection of hyperbo-
las from GPR images using these classical computer vision
strategies is still considered as a challenging task.

Recently, the incredible development of deep convolu-
tional neural networks (CNNs) in computer vision domain
has provided a lot of tools and frameworks to tackle vari-
ous tasks in image understanding and recognition. Efforts
have been done in GPR image processing. In [7], deep CNNs
were exploited for classifying B-scan profiles into threat and
non-threat classes. In [8], landmine detection from GPR data
using CNNs has provided quite promising results compared
to other vision methods. In [9], the authors discussed some
good practices when applying CNNs to the detection of bur-
ried threats from GPR data. However, all of the deep learn-
ing based techniques in the literature have focused on classi-
fication or patch-based detection using sliding window over
the whole image. In this work, we would like to perform an
end-to-end framework for hyperbola detection from GPR B-
scan. To do this, we apply the Faster-RCNN framework [10]
which has proved very effective performance in computer vi-
sion domain. The contributions of the paper are follows: 1)
we first define and pre-train a CNN using the grayscale Cifar-
10 database and then transfer the weights into the Faster-
RCNN framework; 2) the training data are created partly from
the real collected GPR acquisitions and partly from the sim-
ulated radargrams obtained by gprMax toolbox [11]; 3) we
train and fine-tune the Faster-RCNN based on the pre-trained
weights and test on both simulated and real data in order to
prove the effectiveness of the proposed approach.



The remainder of this paper is organized as follows. Sec-
tion 2 first presents the real collected GPR data as well as the
simulated radargrams used in this work. In Section 3, we de-
scribe the proposed approach to adapt the Faster-RCNN for
hyperbola detection from our data. We then provide some
preliminary detection results in Section 4. Finally, Section
5 concludes the paper and discuss some on-going as well as
future perspectives.

2. DATA SETS

2.1. Real collected data

In this work, we exploit about 100 real B-scan data recently
collected from several sites in Rennes, France using a GPR
antenna of 300Hz. Each acquisition has a time range of 100ns
in depth and can penetrate up to 7 meter. Within these data,
hyperbola signatures were recorded from the reflection of
electromagnetic signal on buried objects with different shapes
and materials. Only some are clear and well-shaped, while
most of them are weakly contrasted, asymmetric and per-
turbed by noises and clutters caused by the soil heterogeneity
and the change of impedance between different subsurface
layers. Figure 1 shows two examples of real data from which
we can observe some hyperbolas of various sizes that suffer a
lot of noises and clutters.

Fig. 1. Examples of real GPR radargrams.

2.2. Simulated data

Due to the lack of real data for training, more GPR radar-
grams were generated to simulate different scenarios using
the gprMax toolbox [11]. Various configurations were con-
sidered where objects of different sizes and materials were
placed at different positions and depths. The same antenna
frequency of 300Hz and same time range of 100ns were set
for simulation. The simulated images were then added some
noises which were estimated from the real data. Figure 2
shows two examples of simulated radargrams where hyperbo-
las (generally well-shaped) are intersected and have crossing
prongs. In this work, 50 simulated radargrams were simulated
and combined with the previous real data to perform and eval-
uate the proposed framework.

Fig. 2. Examples of simulated GPR B-scans using gprMax.

3. APPLICATION OF FASTER-RCNN

The proposed approach consists of two main stages which
can be observed from Figure 3: 1) pre-train a designed CNN
on the grayscale Cifar-10 database; 2) train and fine-tune the
Faster-RCNN (based on pre-trained CNN weights) using both
real and simulated GPR data. We now describe each of them
in details.

3.1. Pre-training a CNN on the Cifar-10 database

CNNs are generally comprised of convolution layers followed
by pooling layers and fully-connected layers. Our defined
CNN simply includes 3 convolution layers of 16, 32 and 64
filters of size 5 × 5 pixels (each one is followed by a ReLu
activation and a max-pooling layer of size 2 × 2 pixels) and
one fully-connected layer of 64 neurons. As recommended
in [9], the Cifar-10 was chosen (instead of ImageNet) since
the image size is mall (32 × 32 pixels), which approximates
the size of hyperbolas within the studied GPR images. It can
be trained faster and easier on a personal computer with lim-
ited GPU. Also, in order to match single-channel GPR data,
it is better to train the CNN on grayscale Cifar-10 instead of
the color database.

3.2. Training the Faster-RCNN on both real and simu-
lated GPR data

The Faster-RCNN involves two main components: the Re-
gion proposal network (RPN) and the Fast-RCNN [10]. For
a brief description, the role of RPN is to generate a set of re-
gion proposals while the Fast-RCNN (including a classifier
and a box regression operator) detects whether each region
is an object or not. They both share the same weights from
the previously pre-trained CNN. For more details about the
Faster-RCNN framework, readers are referred to [10].

As shown in Figure 3, both real and simulated GPR im-
ages were exploited to train the Faster-RCNN using the pre-
trained CNN weights. All implementations in this work were
carried out based on the MATLAB Neural Network toolbox
using a PC with a GPU compute capacity 5.0.



Fig. 3. Proposed framework for buried object detection from GPR B-scan images.

4. PRELIMINARY RESULTS

In order to evaluate the proposed approach on both simulated
and real GPR data, three scenarios were tested:

1. Train and test on simulated data;

2. Train and test on real data;

3. Train on simulated + real data, test on real data.

We note that training and test samples were split so that they
were well separated. For real radargrams, we used 60 radar-
grams for training and 40 for testing. For simulated data, 40
were set for training and 10 for testing. We now provide some
preliminary results with qualitative assessment on each test
scenario in order to confirm the effectiveness of the proposed
framework.

4.1. Performance on simulated data (scenario 1)

The first scenario aims at quickly evaluating the proposed ap-
proach only on simulated data. Some detection results are re-
ported in Figure 4 where hyperbolas were detected with high
confidence scores. In general, our experiments showed that
the framework can cope well with this scenario in order to
provide good performance on simulated images.

4.2. Performance on real data (scenarios 2 and 3)

The other two scenarios were experimented when working on
real data. The motivation is to prove that by adding more
simulated radargrams for training, the detection framework
could provide better performance compared to the case that

Fig. 4. Detection results on simulated data.

only real data (with limited quantity) were exploited. In addi-
tion, one classical recognition technique called cascade object
detector (COD) based on the Viola-Jones algorithm [12] was
implemented for comparison.

In Figure 5, we compare the detection results on a real
GPR image yielded by our two scenarios compared to the
COD based on HOG and Haar-like features. Here, results are
shown without any post-processing technique. As we can ob-
serve, the Faster-RCNN can provide better performance com-
pared to COD method which yielded unstable object bound-
ing boxes and more false alarms. Importantly, adding more
simulated data could provide detection results with higher ac-
curacy and confidence, which validates our intention and con-
firms the effectiveness of the proposed scheme.

5. CONCLUSION AND FURTHER WORK

We have applied the well-known Faster-RCNN framework
to the detection of buried objects from GPR B-scan data.
By combining both simulated and real collected radargrams



(a) Cascade object detector - HOG (b) Cascade object detector - Haar-like

(c) Faster-RCNN scenario 2 (d) Faster-RCNN scenario 3 (best)

Fig. 5. Preliminary detection results on real data.

for training, the proposed technique can provide good per-
formance on tested real data and considerably outperforms
detectors using classical features such as HOG and Haar-like.
Therefore, it becomes promising to deal with GPR data with
limited training samples.

Although the effectiveness of the proposed scheme has
been qualitatively observed, our on-going work now focuses
on quantitative evaluation for a better validation. Moreover,
further work related to the detection of hyperbola coordinates
(apex and prong) is necessary for a fine and accurate localiza-
tion of detected objects.
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