Nonlinear unmixing of hyperspectral data with partially linear least-squares support vector regression - Archive ouverte HAL
Communication Dans Un Congrès Année : 2013

Nonlinear unmixing of hyperspectral data with partially linear least-squares support vector regression

Résumé

In recent years, nonlinear unmixing of hyperspectral data has become an attractive topic in hyperspectral image analysis, because nonlinear models appear as more appropriate to represent photon interactions in real scenes. For this challenging problem, nonlinear methods operating in reproducing kernel Hilbert spaces have shown particular advantages. In this paper, we derive an efficient nonlinear unmixing algorithm based on a recently proposed linear mixture/ nonlinear fluctuation model. A multi-kernel learning support vector regressor is established to determine material abundances and nonlinear fluctuations. Moreover, a low complexity locally-spatial regularizer is incorporated to enhance the unmixing performance. Experiments with synthetic and real data illustrate the effectiveness of the proposed method.
Fichier principal
Vignette du fichier
13.icassp.hype.pdf (207.51 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01966004 , version 1 (27-12-2018)

Identifiants

Citer

Jie Chen, Cédric Richard, André Ferrari, Paul Honeine. Nonlinear unmixing of hyperspectral data with partially linear least-squares support vector regression. Proc. 38th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2013, Vancouver, Canada. pp.2174 - 2178, ⟨10.1109/ICASSP.2013.6638039⟩. ⟨hal-01966004⟩
68 Consultations
94 Téléchargements

Altmetric

Partager

More