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ABSTRACT

In recent years, nonlinear unmixing of hyperspectral data has be-

come an attractive topic in hyperspectral image analysis, because

nonlinear models appear as more appropriate to represent photon in-

teractions in real scenes. For this challenging problem, nonlinear

methods operating in reproducing kernel Hilbert spaces have shown

particular advantages. In this paper, we derive an efficient nonlin-

ear unmixing algorithm based on a recently proposed linear mix-

ture/nonlinear fluctuation model. A multi-kernel learning support

vector regressor is established to determine material abundances and

nonlinear fluctuations. Moreover, a low complexity locally-spatial

regularizer is incorporated to enhance the unmixing performance.

Experiments with synthetic and real data illustrate the effectiveness

of the proposed method.

Index Terms— Nonlinear unmixing, hyperspectral image, sup-

port vector regression, multi-kernel learning, spatial regularization.

1. INTRODUCTION

Hyperspectral imagery provides data with a wide spectral range and

high spectral resolution. These characteristics are desirable for de-

tection and classification of surfaces and chemical elements in real

images. Hyperspectral image processing has become a continuously

growing area, and now receives considerable attention.

Due to multiple factors, including the possible low spatial reso-

lution of some hyperspectral-imaging devices, the diversity of mate-

rials, the reflections of photons onto several objects, etc., problems

with mixed pixels can occur and be critical for proper interpretation

of images. Spectral unmixing is an important issue to analyze hy-

perspectral data. It consists of decomposing each mixed pixel into

pure endmember spectra, and estimating the fractional abundance of

each endmember [1].

Linear unmixing methods have been extensively considered

within the area of remote sensing. In the recent years, researchers

have progressively focused on nonlinear unmixing method, as there

are many situations in which the classical linear mixture model may

be insufficient [2]. Recent nonlinear unmixing approaches dedicated

to hyperspectral images can be divided into the following classes:

1) Direct methods: Some techniques mimic the nonlinear interac-

tions between endmember spectra by incorporating them into the re-

gression model in an explicit way. For instance, the authors in [3, 4]

extended the collection of endmembers by adding artificial crossed

spectra to model photon interactions. 2) Manifold learning methods:

These approaches exploit low dimensional manifolds embedded in

high-dimensional sensed data [5]. Algorithms based on Isomap and

LLE, which assume the local linearity of data, were recently used.

3) Kernel-based methods: These approaches can model complex

interactions among material signatures by the virtue of kernel trick.

In [6], we introduced a new framework for estimating abundances

involved in a nonlinear mixture of hyperspectral data. It overcomes

the drawbacks of former heuristic kernel unmixing methods [7].

4) Bayesian methods: In [8, 9], Bayesian inference was used to

estimate the fraction of abundances within the context of nonlinear

mixing scenarios, using generated samples distributed according to

the posterior distribution. 5) Neural networks: This family refers to

techniques that intend to establish, based on a collection of training

data, an input-output relation between some observed data and their

abundances via black-box modeling [10, 11].

Among the above mentioned methods, kernel-based algorithms

have demonstrated great generality and excellent performance for

nonlinear unmixing [6, 12, 13]. In this paper, the inherent spectral

mixing mechanism is modeled by a partial linear model, consisting

of linear mixture components and a nonlinear fluctuation term de-

fined in a reproducing kernel Hilbert space (RKHS). A multi-kernel

support vector regression algorithm is derived to estimate the mate-

rial abundances, and to automatically adjust the proportion between

the linear and the nonlinear components. Furthermore, spatial cor-

relation is also considered by a local regularization term which does

not introduce extra computational complexity. This work is a follow-

on work of the state-of-the-art kernel unmixing work [6, 13]. Bene-

fiting from the specific structure of the unmixing problem, and from

the spatial information, the proposed approach provides a reliable

estimation of fractional abundances. Its advantages are illustrated

via comparative experiments.

2. NOTATIONS AND NONLINEAR MIXTURE MODEL

Consider that an observed scene consists of R significant endmem-

bers with spectral signature mi ∈ R
L, where L denotes the number

of spectral bands. Note that, usually, we have R ≪ L. Let r ∈ R
L

be an hyperspectral pixel, and α ∈ R
R the unknown abundance vec-

tor associated to the latter. Let M = [m1, . . . ,mR] ∈ R
L×R be

the matrix of the endmember spectra. For the sake of convenience,

the ℓ-th row of M is denoted by m⊤
λℓ

∈ R
L, that is, mλℓ

is the

vector of the endmember signatures at the ℓ-th wavelength band.

Nonlinear mixture usually results from complex interactions of

light sources scattered by multiple materials in the scene. Linear

mixing model is a reasonable approximation in cases where these

interactions are not significant. However, when such effects cannot

be neglected, it is more reasonable to assume that mixing consists of

a linear trend and a nonlinear fluctuation term, rather than leaving a

nonlinear model totally uncontrolled. Based on this point of view,

we model the mixing mechanism with respect to each spectral band

ψ(mλℓ
) = θα⊤

mλℓ
+ ψnlin(mλℓ

) + eℓ (1)



where θ is an additional factor that affects the linear mixture, which

is parameterized by the abundance vector α. Function ψnlin is sup-

posed to describe the nonlinear interactions between spectra, and eℓ
is the modeling error. In this paper, the function ψnlin is restricted to

be an element of a RKHS, say Hnlin, such that

ψnlin(mλℓ
) = 〈ψ,κnlin(·,mλℓ

)〉Hnlin
, ∀ψnlin ∈ Hnlin (2)

The corresponding kernel satisfies to the reproducing property

κnlin(mλℓ
,mλk

) = 〈κnlin(·,mλℓ
), κnlin(·,mλk

)〉 (3)

Several nonlinear models, for instance the bilinear model and post-

nonlinear models, can be expressed or approximated by this model.

Moreover, the non-negativity and the sum-to-one constraints are usu-

ally considered for abundance α estimation, namely,

α � 0 and 1
⊤
α = 1 (4)

It should be noticed that the rationality of imposing the sum-to-one

constraint is under discussion among researchers. In this paper, we

preserve it because discarding this constraint will only simplify the

mathematical problem and the proposed algorithm. They can be eas-

ily modified to be adapted to this case.

3. NONLINEAR UNMIXING WITH LEAST-SQUARES

SUPPORT VECTOR REGRESSION

We assume that the endmember matrix M has been determined

by an endmember extraction algorithm. This approach is usu-

ally referred to as supervised unmixing. Pixel unmixing using the

model (1) is achieved by estimating θ, α, and ψnlin. In order to

further control the balance between the linear trend and the nonlin-

ear fluctuation term, we propose to solve the following multi-kernel

least-squares support vector problem, in which these proportions are

controlled via functional norms.

ψ∗,θ∗,u∗=argmin
ψ,θ,u

1

2

(
‖ψlin‖

2

H′
lin

u
+

‖ψnlin‖
2

H′
nlin

1− u

)
+

1

2µ

L∑

ℓ=1

e2ℓ

subject to eℓ = rℓ − ψ(mλℓ
)

and ψ = ψlin + ψnlin with ψlin(mλℓ
) = θα⊤

mλℓ

α � 0 1
⊤
α = 1

θ ∈ IR∗
+ 0 ≤ u ≤ 1

where Hlin and Hnlin are RKHS. This problem is not convex, and is

difficult to solve as formulated. Fortunately, it can be transformed

into an equivalent convex problem in the sense of [14, p. 130]. Con-

sider the variable change h = θα. The cost function can be directly

reformulated as a function of h. The linear function is expressed by

ψlin(mλℓ
) = h

⊤
mλℓ

, (5)

and the two constraints over α become

(h � 0) and (1⊤
h = θ with θ ∈ IR∗

+)

The latter constraint can be eliminated because it is trivial due to the

former one. Because h = θα and 1
⊤α = 1, we have α∗ = h∗/θ∗

with θ∗ = 1
⊤h∗. This leads us to the following problem

min
u
J(u) subject to 0 ≤ u ≤ 1 (6)

where J(u) is defined by

J(u)=






minψ F (u, ψ)= 1

2

(
‖ψlin‖

2

Hlin

u
+

‖ψnlin‖
2

Hnlin

1−u

)
+ 1

2µ

∑L

ℓ=1
e2ℓ

subject to eℓ = rℓ − ψ(mλℓ
)

ψ = ψlin + ψnlin

ψlin(mλℓ
) = h⊤mλℓ

h � 0

(7)

Appropriate definitions for Hlin and Hnlin, and continuity considera-

tions, are used for defining J(u) in u = 0 and 1. See [6] for details.

It can be shown that the problem (6)-(7) is a convex optimization

problem by virtue of the convexity of the so-called perspective func-

tion defined by f(u, ψ) = ‖ψ‖2Hlin/nlin
/u over IR+ × Hlin/nlin [14].

This allows to formulate a two-stage optimization procedure, with

respect to ψ and u successively.

3.1. Solving with respect to ψ

By the strong duality property, we shall now derive a dual problem

that has the same solution J(u) = F (u, ψ∗) as the primal prob-

lem (7). Let us introduce the Lagrange multipliers βℓ and γr . The

Lagrange function associated with the problem (7) can be written as

G =
1

2

(
1

u
‖h‖2 +

1

1− u
‖ψnlin‖

2
Hnlin

)
+

1

2µ

L∑

ℓ=1

e2ℓ

−
L∑

ℓ=1

βℓ (eℓ − rℓ + ψ(mλℓ
))−

R∑

r=1

γr hr

(8)

with γr ≥ 0, where we have used that ‖ψlin‖
2
Hlin

= ‖h‖2. The

conditions for optimality of G with respect to the primal variables

are given by





h∗ = u
(∑L

ℓ=1
β∗
ℓ mλℓ

+ γ∗
)

ψ∗
nlin = (1− u)

∑L

ℓ=1
β∗
ℓ κnlin(·,mλℓ

)
e∗ℓ = µβ∗

ℓ

(9)

Substituting (9) into (8) leads us to the dual problem (10), see next

page, where Knlin is the Gram matrix defined by

[Knlin]ℓk = κnlin(mλℓ
,mλk

) (11)

Problem (10) is a standard quadratic programming problem

which can be solved by a generic solver. Once β∗ and γ∗ are

determined, pixel reconstruction can be performed using

r
∗ = [ψ∗(mλ1

), . . . , ψ∗(mλL
)]⊤

with ψ∗(mλℓ
) = m⊤

λℓ
h∗+ψ∗

nlin(mλℓ
) defined in equation (9). Fi-

nally, using the relation between h and α, the estimated abundance

vector is given by

α
∗ =

M⊤β∗ + γ∗

1
⊤(M⊤β∗ + γ∗)

(12)

3.2. Solving with respect to u

In the general framework for multi-kernel learning described in [15],

the kernel weights were updated by the reduced gradient method.

In [6, 13], a gradient descent was also used to update u. However,

gradient based updates usually have low convergence rates. An op-

timal step size search strategy is often considered to accelerate the

convergence rate, with a an additional computational cost. We shall

now show that there is a closed-form expression for the optimum u∗.

Notice that the function

fp,q(u) =
p

u
+

q

1− u
with p, q ≥ 0 (13)



J(u) =






max
β,γ

G′(u,β,γ) = −
1

2

(
β

γ

)⊤ (
Ku + µI uM

uM⊤ uI

)(
β

γ

)
+

(
r

0

)⊤ (
β

γ

)

subject to γ � 0

with Ku = uMM
⊤ + (1− u)Knlin

(10)

Jsp(u) =





max
β,γ

G′
sp(u,β,γ) = −

1

2

(
β

γ

)⊤ (
Ku + µI ξM

ξM⊤ ξI

)(
β

γ

)
+

(
r − ξζM

∑
i∈Nn

ωih
∗
i

−ξζ
∑
i∈Nn

ωih
∗
i

)⊤ (
β

γ

)

subject to γ � 0

with Ku = ξMM
⊤ + (1− u)Knlin and ξ =

u

1 + uζ

(19)

is convex over the interval (0, 1). The optimum value is achieved at

u∗ = (1 +
√
q/p)−1

(14)

Now considering the problem (6), and using the stationarity condi-

tions (9), we conclude that the optimum value u∗ at each iteration is

given by

u∗ =

(
1 + (1− u∗

−1)

√
(β∗⊤Knlinβ

∗)/‖h∗‖2
)−1

(15)

where u∗
−1 denotes the optimal u∗ obtained at the previous iteration.

4. LOCALLY-SPATIAL REGULARIZATION

One of the distinguishing properties of remotely sensed data is that

they convey multivariate information into a 2D pictorial representa-

tion [16]. Incorporating spatial information may have a positive im-

pact on hyperspectral unmixing. Exploiting spatial information can

be conducted by designing appropriate criteria, usually, by adding

a penalizing term to the modeling error that promotes similarity of

fractional abundances between one pixel and some others to be de-

fined. Spatial regularization techniques incorporating all the pixels,

such as TV norm, lead to a global optimization problem that no-

tably increase the computational burden [17, 18]. To overcome this

drawback, we adopt hereafter a local regularization strategy, and we

associate it to the nonlinear unmixing algorithm presented before.

Let us identify the current pixel under analysis by the index n.

In addition to estimating hn via the optimization problem (6)-(7),

we shall also promote the similarity between hn and its neighbors

by considering the quadratic penalty term

Jreg(hn) =
ζ

2

∑

i∈Nn

ωi‖hn − h
∗
i ‖

2. (16)

where the dissimilarities with the neighboring pixels i in Nn are

weighted by ωi. The abundance vectors h∗
i are considered to have

already been estimated. If the image is treated one pixel after an-

other, sequentially along rows, an example of such a neighborhood

is defined by {n − 1, n − w, n − w − 1}, where w is the width of

the image. Although ℓ1-type regularization has favorable properties

in image processing, it adds significant complexity to the nonlinear

algorithm. For this reason, we shall employ this ℓ2 regularization

combined with the following strategy

1. Calculate ω̃i = ‖rn−ri‖
2/‖rn‖

2, which represents the nor-

malized spectral distance between pixel n and its neighbors;

2. If mini ω̃i > ν0, with ν0 a given threshold, the algorithm is

conducted without spatial regularization using (10).

3. Otherwise, the weights ωi are determined from the ω̃i’s by

ωi =
1/ω̃i∑

i∈Nn
1/ω̃i

(17)

and the algorithm is conducted with the spatial regularization

term (16).

Step 2. allows to disable spatial regularization in the case where the

spectral distance between pixel n and its neighbors is significant,

which may preserve transient phenomena. This step can obviously

be eliminated if preferred, and the definition (17) changed. Finally,

unmixing with spatial regularization is performed by adding (16) to

the Lagrange function (8). The conditions for optimality yield





h∗
n = u

1+uζ

(∑L

ℓ=1
β∗
ℓ mλℓ

+ γ∗ + ζ
∑

i∈Nn
ωih

∗
i

)

ψ∗
nlin = (1− u)

∑L

ℓ=1
β∗
ℓ κnlin(·,mλℓ

)
e∗ℓ = µβ∗

ℓ

(18)

Substituting (18) into the Lagrange function leads us to the dual

problem (19). It is interesting to note that this optimization problem

has the same computational complexity as (10). Once the duality

variables are determined, the vector of fractional abundances can be

estimated as follows

α
∗
n =

(
M⊤β + γ∗ + ζ

∑
i∈Nn

ωih
∗
i

)

1
⊤
(
M⊤β + γ∗ + ζ

∑
i∈Nn

ωih
∗
i

) . (20)

Finally, note that the update equation (15) for u remains unchanged.

5. EXPERIMENT RESULTS

5.1. Experiments with synthetic data

Let us first report some experimental results on synthetic images.

The endmembers were randomly selected from the library ASTER

where signatures have reflectance values measured over 224 spectral

bands, uniformly distributed in the interval 3− 12 µm [19].

5.1.1. Spatially-uncorrelated pixels

Random pixels were first generated to test the performance of the ba-

sic nonlinear unmixing algorithm. Pixels with three, five and eight

endmembers were generated respectively with the linear model, the



Table 1. Spatially-uncorrelated pixels: RMSE comparison (×10−2)
R = 3 R = 5 R = 8

linear bilinear PNMM linear bilinear PNMM linear bilinear PNMM

FCLS 1.10 ± 0.02 33.2 ± 4.37 21.3 ± 1.31 1.65 ± 0.03 23.6 ± 1.73 14.8 ± 0.72 3.16 ± 0.08 21.3 ± 1.31 12.7 ± 0.49
ExtM 1.29 ± 0.02 6.27 ± 0.43 19.6 ± 1.42 2.31 ± 0.07 6.50 ± 0.29 14.5 ± 0.61 3.98 ± 0.16 7.36 ± 0.31 12.3 ± 0.52

K-Hype 2.61± 0.07 3.30 ± 0.13 5.40 ± 0.28 3.37 ± 0.11 3.34 ± 0.13 5.13 ± 0.24 3.65 ± 0.13 3.56 ± 0.14 5.11 ± 0.24
Proposed 1.92 ± 0.04 3.66 ± 0.14 3.21 ± 0.12 3.18 ± 0.11 3.65 ± 0.14 4.99 ± 0.24 3.21 ± 0.11 3.70 ± 0.14 4.95 ± 0.26

generalized bilinear mixture model [8], and the post-nonlinear mix-

ing model (PNMM) defined by r = (Mα)0.7+n. In each scenario,

1000 pixels were generated for evaluating and comparing the per-

formance. All these images were corrupted with an additive white

Gaussian noise n with SNR = 30 dB. The Gaussian kernel defined

as κnlin(mλp ,mλℓ
) = exp(−‖mλp −mλℓ

‖2/2σ2
0) was used.

Our approach was compared with the fully constrained least

square method (FCLS) [20], and the extended endmember-matrix

method (ExtM) [3], and the K-Hype algorithm [6]. The root mean

square error (RMSE) of the abundance vectors was used to compare

these algorithms. Preliminary runs were performed with indepen-

dent data to set their parameters. The results are reported in Table 1.

The proposed method had better performance than the other algo-

rithms except for linearly-mixed data. It however outperformed K-

Hype in this case because it can automatically balance ψlin and ψnlin.

This is a key advantage because nonlinear mixing effects can be

weak in some situations, in particular if there is a locally-dominant

material. Figure 1 illustrates this situation, where material #9 is dom-

inant in the center of the scene. See image DC2 in [17], mixed with

a bilinear model.

5.1.2. Spatially-correlated pixels

We shall now check the advantage of incorporating spatial infor-

mation, and validate the proposed locally-spatial regularization. A

synthetic image of 75 × 75 pixels was generated with the bilinear

mixture model using five signatures. The pure regions and mixed

regions involved between 2 and 5 endmembers, spatially distributed

in the form of square regions. See image DC1 in [17] for details.

The image was corrupted by a white Gaussian noise with SNR = 25
dB. The regularization parameter ζ was set to 10. The threshold ν0
was set to 0.01. The true abundances and estimated abundances of

the 4-th and 5-th materials are illustrated in Figure 2, with RMSE at

the bottom of each image. The effect of spatial regularization can be

clearly observed.

5.2. Experiments with real data

This experiment illustrates the performance of the proposed algo-

rithms, when applied to real hyperspectral data. This scene is the

well-known image captured on the Cuprite mining district (NV,

USA) by AVIRIS. A sub-image of 250 × 191 pixels was chosen to

evaluate the algorithms. This area of interest has L = 188 spec-

tral bands. The number of endmembers was first estimated via the

virtual dimensionality, and R was accordingly set to 12 [21]. VCA

algorithm was then used to extract the endmembers. The proposed

algorithms, with/without spatial regularization, were run with the

Gaussian kernel. The kernel bandwidth was set to σ2
0 = 2. The

regularization parameter µ was fixed to 5 · 10−3. The spatial regu-

larization parameter ζ was set to 10. The unmixing results for three

materials are shown in Figure 3. It can be observed that the mineral

distributions are consistent with the reference map [22], and the US

Highway 95 can be clearly identified whereas the linear unmixing

failed to separate it [6].
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Fig. 1. Illustration of the situation where one material dominates the others.
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Fig. 2. Effect of locally-spatial regularization
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Fig. 3. Unmixing results for the Cuprite district scene

6. CONCLUSION AND PERSPECTIVES

We presented a least-squares support-vector regression approach for

hyperspectral data unmixing. The model is partially linear, that is,

it combines a linear trend and a nonlinear correction term. Multi-

kernel learning was used to tune the balance between the linear and

nonlinear components, resulting in a convex optimization problem.

A locally-spatial regularizer, which does not introduce extra com-

putational expenses, was proposed to enhance the unmixing perfor-

mance. Future work will focus on endmember extraction within this

nonlinear unmixing framework.
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