Kernel non-negative matrix factorization without the pre-image problem - Archive ouverte HAL
Communication Dans Un Congrès Année : 2014

Kernel non-negative matrix factorization without the pre-image problem

Fei Zhu
  • Fonction : Auteur
  • PersonId : 961917
Maya Kallas

Résumé

The nonnegative matrix factorization (NMF) is widely used in signal and image processing, including bio-informatics, blind source separation and hyperspectral image analysis in remote sensing. A great challenge arises when dealing with nonlinear NMF. In this paper, we propose an efficient nonlinear NMF, which is based on kernel machines. As opposed to previous work, the proposed method does not suffer from the pre-image problem. We propose two iterative algorithms: an additive and a multiplicative update rule. Several extensions of the kernel-NMF are developed in order to take into account auxiliary structural constraints, such as smoothness, sparseness and spatial regularization. The relevance of the presented techniques is demonstrated in unmixing a synthetic hyperspectral image.
Fichier principal
Vignette du fichier
14.mlsp.nmf.pdf (118.76 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01965998 , version 1 (02-01-2019)

Identifiants

Citer

Fei Zhu, Paul Honeine, Maya Kallas. Kernel non-negative matrix factorization without the pre-image problem. 24th IEEE Workshop on Machine Learning for Signal Processing, MLSP 2014, Sep 2014, Reims, France. ⟨10.1109/MLSP.2014.6958910⟩. ⟨hal-01965998⟩
138 Consultations
239 Téléchargements

Altmetric

Partager

More