Diffusion Strategies For In-Network Principal Component Analysis - Archive ouverte HAL
Communication Dans Un Congrès Année : 2014

Diffusion Strategies For In-Network Principal Component Analysis

Résumé

This paper deals with the principal component analysis in networks, where it is improper to compute the sample covariance matrix. To this end, we derive several in-network strategies to estimate the principal axes, including noncooperative and cooperative (diffusion-based) strategies. The performance of the proposed strategies is illustrated on diverse applications, including image processing and dimensionality reduction of time series in wireless sensor networks.
Fichier principal
Vignette du fichier
14.mlsp.pca.pdf (287.37 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01965993 , version 1 (02-01-2019)

Identifiants

Citer

Nisrine Ghadban, Paul Honeine, Farah Mourad-Chehade, Clovis Francis, Joumana Farah. Diffusion Strategies For In-Network Principal Component Analysis. Proc. 24th IEEE workshop on Machine Learning for Signal Processing (MLSP), 2014, Reims, France. pp.1 - 6, ⟨10.1109/MLSP.2014.6958849⟩. ⟨hal-01965993⟩
51 Consultations
100 Téléchargements

Altmetric

Partager

More