
HAL Id: hal-01965993
https://hal.science/hal-01965993v1

Submitted on 2 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Diffusion Strategies For In-Network Principal
Component Analysis

Nisrine Ghadban, Paul Honeine, Farah Mourad-Chehade, Clovis Francis,
Joumana Farah

To cite this version:
Nisrine Ghadban, Paul Honeine, Farah Mourad-Chehade, Clovis Francis, Joumana Farah. Diffusion
Strategies For In-Network Principal Component Analysis. Proc. 24th IEEE workshop on Machine
Learning for Signal Processing (MLSP), 2014, Reims, France. pp.1 - 6, �10.1109/MLSP.2014.6958849�.
�hal-01965993�

https://hal.science/hal-01965993v1
https://hal.archives-ouvertes.fr


2014 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 21–24, 2014, REIMS, FRANCE

DIFFUSION STRATEGIES FOR IN-NETWORK PRINCIPAL COMPONENT ANALYSIS

Nisrine Ghadban1,2, Paul Honeine1, Farah Mourad-Chehade1, Clovis Francis2, Joumana Farah3

1 Institut Charles Delaunay, Université de technologie de Troyes, CNRS, France
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ABSTRACT

This paper deals with the principal component analysis in net-

works, where it is improper to compute the sample covariance

matrix. To this end, we derive several in-network strategies

to estimate the principal axes, including noncooperative and

cooperative (diffusion-based) strategies. The performance of

the proposed strategies is illustrated on diverse applications,

including image processing and dimensionality reduction of

time series in wireless sensor networks.

Index Terms— Principal component analysis, network,

adaptive learning, distributed processing

1. INTRODUCTION

The principal component analysis (PCA) is one of the most

popular unsupervised learning techniques, with applications

in statistical analysis, data compression, and feature extrac-

tion [1]. It defines a set of principal axes that transforms

a number of correlated variables into uncorrelated ones, the

so-called principal components. The most relevant principal

axes retain the largest variance of the data. The PCA tech-

nique has been investigated in many applications involving

multivariate analysis, e.g., data validation and fault detection

[2] and quality control [3]. It is very useful in a sensor net-

work, where it helps in extracting features from noisy samples

[4], compressing and denoising times series measurements

[5, 6], as well as for intrusion detection [7] and anomaly de-

tection [8].

The conventional PCA requires the eigen-decomposition

of the sample covariance matrix. Such calculation is inap-

propriate for networks since sending all data to a fusion cen-

ter (FC) is not scalable. Moreover, the computational com-

plexity is cubic with the size of the dataset. Several attempts

have been made to alleviate this problem, such as in [9, 10];

however, these techniques remain computationally inefficient.

More recently, in [11], only the principal components have

been transmitted to the FC, instead of the whole time series.

In [12], the power iteration method is investigated to estimate
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the most relevant principal axis. This method requires the

computation of the sample covariance matrix, making it inap-

propriate for in-network processing.

In this paper, we propose to estimate the principal axis

without computing the sample covariance matrix. To this

end, we investigate two principles, the Oja’s neural-based

rule [13], which has been recently investigated in [14] for

nonlinear PCA with kernel-based machines, and the informa-

tion theoretical criterion derived in [15]. Within a network

setting, we derive several in-network algorithms, including

noncooperative and cooperative strategies. In the latter, sen-

sors cooperate by information diffusion in order to estimate

the principal axis. Two diffusion strategies are derived, the

so-called combine-then-adapt and adapt-then-combine strate-

gies, which have been recently investigated in linear adaptive

filtering literature by A. Sayed et al. in [16]. To the best of

our knowledge, the present study is the first work that investi-

gates these adaptation strategies for unsupervised learning, as

given here with the PCA.

The rest of this paper is organized as follows. Section 2

presents the network topology and Section 3 describes the

proposed strategies for estimating the first principal axis. The

strategies are extended in Section 4 for multiple axes extrac-

tion. Section 5 provides experimentation results and discus-

sions.

2. NETWORK MODEL

We consider a connected network of N nodes (agents), where

any two nodes are either directly linked if they are neigh-

bors, or through other intermediate nodes. We differentiate

between a centralized network where the nodes are connected

to a FC, and a decentralized network where the nodes are

connected in a noncooperative way by a routing system or

in a cooperative way where each node communicates with its

neighbors. Figure 1 illustrates these network topologies. Let

Vk denote the indices set of the neighboring nodes to node k,

with k = 1, ..., N , i.e., the nodes that are directly connected

to it. We consider that the node k is adjacent to itself, that is to

say k ∈ Vk. The notation Vk would be useful in the following

for cooperative networks.
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Fig. 1. Illustration of information processing within the proposed networks.

In this paper, the nodes estimate the same principal axis

w based on some measured information corresponding to a

common phenomenon. Let xk be the (p× 1) vector collected

by the node k, for k = 1 · · ·N , p being the measurements

dimension, and let X ⊂ R
p be the space of these collected

data (assumed to be zero-mean), with the conventional inner

product x⊤
k xl for any xk,xl ∈ X. We denote by the scalar

value yw,k = w⊤xk the inner product associated with the

orthogonal projection of any xk ∈ X onto the vector w ∈ X

and by yw the scalar random variable taking the values yw,k,

with k = 1, ..., N . The ultimate goal would be to compute w,

according to the networks topologies, to keep afterwards only

yw,k and w, k = 1, ..., N , allowing us to rebuild optimally

the data xk when needed.

3. IN-NETWORK PCA

In this section, we first expose the conventional strategy for

PCA where the network is assumed to be centralized. We de-

rive then our new strategies to extract the first principal axis.

3.1. Centralized strategy

Here, the nodes are assumed to be connected to a FC, to which

they send their collected data without any local processing.

The FC extracts the first principal axis that maximizes the

variance of the projected data, namely maxw E(y
2
w), where

E(·) is the expectation over the density of input data. By tak-

ing the empirical estimation of the latter with respect to the

available samples, x1,x2, . . . ,xN , we get maxw w⊤Cw,

where C = 1

N

∑N

k=1
xkx

⊤
k is the covariance of the mea-

sured data. It is well known that the problem takes the form

Cw = λw. This is an eigen-decomposition problem where

w is the eigenvector associated with the eigenvalue λ of C.

One can easily see that the latter is the corresponding vari-

ance, since

w⊤Cw = w⊤λw = λw⊤w = λ.

Therefore, to maximize the variance of the projected data,

the eigenvector associated with the largest eigenvalue must

be considered. This eigenvector, denoted by w∗, corresponds

to the first principal axis and is determined by the FC using

the data x1, . . . ,xN . Since the covariance matrix C is a p-

by-p matrix, the computational complexity1 of such operation

is O(p3). In the following, we propose strategies that allow

reducing the computational complexity by avoiding the cal-

culation of the covariance matrix.

3.2. Noncooperative strategy

Instead of explicitly investigating the covariance matrix, we

propose to adaptively learn the first principal axis, by consid-

ering an in-network scheme. To this end, instead of directly

maximizing the overall projected variance E(y2
w
), we con-

sider an “instantaneous” estimation at each node. According

to a routing process, each node k receives an estimate wt−1

from another node, and adjusts it using its own data xk by

maximizing y2
w,k. In the following, two different cost func-

tions are explored.

• In the first alternative, the “instantaneous” quadratic re-

construction error is minimized, namely

Jk(w) = 1

4
‖xk − yw,kw‖2. (1)

The gradient of this cost function with respect to w is

∇wJk(w) = yw,k(yw,kw − xk), (2)

which leads to the gradient descent formulation

wt = wt−1 + ηt (xk ywt−1,k − y2wt−1,k
wt−1), (3)

where ηt is the learning rate. This update rule is essen-

tially Oja’s rule [13], which is a single-neuron special

case of the generalized Hebbian learning, applied here

within the in-network setting described above.

1One may also include the communication complexity, which is O(Np)
over a distance O(1).



• Drawing inspiration from the information theoretical

framework studied in [15, 17], we minimize the fol-

lowing cost function associated with node k:

Jk(w) = 1

2
w⊤w − 1

2
ln(y2

w,k). (4)

whose gradient with respect to w is

∇wJk(w) = w −
xk

yw,k

. (5)

By applying the gradient descent technique on this cost

function, this leads to the following update rule:

wt = wt−1 + ηt

( xk

ywt−1,k

−wt−1

)

. (6)

The update rules (3) and (6) are intimately connected,

since the latter can be derived from the former by using the

normalized learning rate ηt/y
2

wt−1,k
. For this reason, we will

provide throughout this paper the general expressions, while

we study the effect of such normalization in experiments.

These learning rules converge to the same equilibrium

state, which is the first principal axis w∗. In fact, when wt

converges to some state w, we have xkyw,k = y2
w,kw (from

(3)) or xk/yw,k = w (from (6)), namely xkx
⊤
k w = y2

w,kw.

Averaging the latter expression over the whole data, we get

the well-known eigen-decomposition problem of the covari-

ance matrix Cw = E(y2w)w, where the eigenvalue is the

squared output yw,k to be maximized. Therefore, the two up-

date rules (3) and (6) converge to the eigenvector associated

with the largest eigenvalue of the covariance matrix.

3.3. Cooperative strategies

Now, each node k has access to the information of its neigh-

borhood Vk. The optimization problem can be presented as a

minimization of the cost function
∑N

k=1
Jk(w), where Jk(w)

is the cost function at node k, for instance either (1) or (4).

Since each node k communicates only with its neighbors, we

introduce the nonnegative coefficients ckl that relate the node

k to its neighbors. They satisfy the following conditions:

ckl ≥ 0,
∑

l∈Vk

ckl = 1, and ckl = 0 if l /∈ Vk. (7)

It is worth noting that if l /∈ Vk, k /∈ Vl and thus clk is also

null. These coefficients allow defining, for each node l, a local

cost that consists of a weighted combination of the individual

costs of the neighbors of node l (including l itself):

J loc
l (w) =

∑

k∈Vl

ckl Jk(w) =

N
∑

k=1

ckl Jk(w). (8)

It turns out that the cumulative sum of these local cost func-

tions is equal to the global cost function since we have

N
∑

k=1

Jk(w)=
N
∑

k=1

(

N
∑

l=1

ckl

)

Jk(w)=
N
∑

l=1

N
∑

k=1

cklJk(w)=
N
∑

l=1

J loc
l (w).

For node k, the global cost function can be decomposed as

N
∑

l=1

Jl(w) = J loc
k (w) +

N
∑

l=1

l 6=k

J loc
l (w). (9)

While the first term in the right-hand-side is known at the

node under scrutiny, the second one should be estimated us-

ing information from the neighbors of node k; thus, the above

summation is restricted to its neighborhood. Moreover, we

relax it by constraining the norm between the estimated vec-

tor w and the optimal (global) principal axis w∗ within the

neighborhood of node k, with the following regularization:

N
∑

l=1

l 6=k

J loc
l (w) ≈

∑

l∈Vk\{k}

blk ‖w −w∗‖
2,

where the parameters blk control the tradeoff between the ac-

curacy and the smoothness of the solution. Such regulariza-

tion is also motivated by investigating the second-order Taylor

expansion of J loc
l (w), as described in [18]. Note that we use

w∗ knowing that we do not have access to its value. We will

show in the following how to overcome this problem.

By injecting this approximation into (9), and using (8),

the minimization of the latter is equivalent to minimizing

Jglob

k (w) =
∑

l∈Vk

clkJl(w) +
∑

l∈Vk\{k}

blk‖w −w∗‖
2. (10)

In order to minimize the above cost function, the node k ap-

plies the gradient descent on Jglob

k (w) with:

wk,t = wk,t−1 − ηk,t ∇wJglob

k (wk,t−1). (11)

Here, ηk,t is the learning rate for node k at iteration t. Re-

placing Jglob

k (w) by its expression in (10), we get:

wk,t = wk,t−1 − ηk,t
∑

l∈Vk

clk∇wJl(wt−1)

+ ηk,t
∑

l∈Vk\{k}

blk(w∗ −wk,t−1).

In this expression, ∇wJl(wt−1) is the gradient of the PCA-

based cost function, presented earlier in (2) and (5). In the

former case, we get

wk,t = wk,t−1 + ηk,t
∑

l∈Vk

clk
(

xl ywt−1,l − y2
wt−1,l

wl,t−1

)

+ ηk,t
∑

l∈Vk\{k}

blk(w∗ −wk,t−1), (12)

while the latter corresponds to substituting the above learning

rate by ηk,t/y
2

wt−1,k
. Without loss of generality, we will con-

sider the update rule (12) in the following. This update rule



from wk,t−1 to wk,t involves adding two correction terms:

the first one operates in the maximum variance direction and

the second one associates neighborhood regularization. By

decomposing this expression into two successive steps, , we

get two possible strategies, depending on the order of adding

the correction terms, and that differ essentially in the approx-

imation of the unknown w∗ in (12), as shown next.

Adapt-then-combine strategy

We express the update rule (12) as follows:

φk,t = wk,t−1 + ηk,t
∑

l∈Vk

clk

(

xlywt−1,l − y2
wt−1,l

wl,t−1

)

,

wk,t = φk,t + ηk,t
∑

l∈Vk\{k}

blk(w∗ − φk,t).

The first step uses local gradient vectors from the neighbor-

hood of the node k in order to update wk,t−1 to the interme-

diate estimate φk,t. By incorporating information from the

neighbors, this intermediate estimate is generally a better es-

timate for w∗ than wk,t−1, as used in the second step, which

becomes

wk,t = φk,t + ηk,t
∑

l∈Vk\{k}

blk (φl,t − φk,t),

or, equivalently wk,t =
∑

l∈Vk
akl φl,t where we have used

the following nonnegative weighting coefficients:

akl =







1− ηk,t
∑

i∈Vk\{k}
bik, if l = k;

ηk,t blk, if l ∈ Vk\{k} ;

0, otherwise.

Combine-then-adapt strategy

In this strategy, we express the update rule (12) as follows:

φk,t = wk,t−1 + ηk,t
∑

l∈Vk\{k}

blk(w∗ −wk,t−1)

wk,t = φk,t + ηk,t
∑

l∈Vk

clk

(

xl ywt−1,l − y2
wt−1,l

φl,t

)

.

By approximating w∗ by wl,t−1 and introducing the same

coefficients akl, we obtain the update rule

φk,t =
∑

l∈Vk

akl wl,t−1,

wk,t = φk,t + ηk,t
∑

l∈Vk

clk

(

xl ywt−1,l − y2wt−1,l
φl,t

)

.

3.4. Connections to the consensus strategies

The consensus-type implementation is a class of distributed

strategies that takes the following form:

wk,t =
∑

l∈Vk

aklwk,t−1+ηk,t

(

xk ywt−1,k− y2
wt−1,k

wk,t−1

)

.

We notice that the consensus strategy has the same com-
putational complexity as for the adapt-then-combine and
the combine-then-adapt diffusion strategies. However, these
diffusion strategies outperform the consensus implementa-
tion. Indeed, we can express the adapt-then-combine and the
combine-then-adapt diffusion strategies respectively by:

wk,t =
∑

l∈Vk

akl

(

wk,t−1 + ηk,t

(

xk yw,k − y
2

w,kwk,t−1

)

)

,

wk,t =
∑

l∈Vk

aklwk,t−1 + ηk,t

(

xk yw,k − y
2

w,k

∑

l∈Vk

aklwk,t−1

)

.

Considering for instance the combine-then-adapt strategy, we

note that the combination coefficients akl appear in the cor-

rection term, while the consensus uses only wk,t−1 to correct

the error, which is less effective, as will be shown in the ex-

perimental results.

4. MULTIPLE PRINCIPAL AXES

To extend the derivation to multiple principal axes, we de-

note by W t = [w1,t w2,t · · · wr,t]
⊤, the r-by-p ma-

trix of the first r principal axes estimated at iteration t,
listed in descending order of their eigenvalues. Let y

W ,k =

[yw1,k yw2,k · · · ywr,k]
⊤, where ywj ,k = w⊤

j,txk.

Next, we combine the update rules given in Sections 3.2 and

3.3 with the Gram-Schmidt orthogonalization process.2

In the noncooperative strategy, we get the update rule of

the j-th principal axis as following:

wj,t = wj,t−1 + ηt

(

xk ywj ,k − ywj ,k

j
∑

l=1

ywj ,lwl,t−1

)

,

(13)
which is essentially similar to a Sanger’s generalized Hebbian
algorithm [19]. In matrix form, we obtain

W t = W t−1+ηt

(

y
W t−1,k

x
⊤

k −LT(y
W t−1,k

y
⊤

W t−1,k
)W t−1

)

,

(14)

where LT(·) makes its argument lower triangular by setting

to zero the entries above its diagonal. Note that the learning

rate does not needs to be the same for all the principal axes.
In the cooperative strategies, we denote by Φk,t =

[φ1,k,t φ2,k,t · · · φr,k,t]
⊤ the r-by-p matrix of the r in-

termediate estimates. Written in a matrix form, the update
rule associated with the adapt-then-combine strategy becomes

Φk,t = Wk,t−1 + ηk,t

(

yWt−1,k
x⊤
k − LT(yWt−1,k

y⊤
Wt−1,k

)Wk,t−1

)

,

W k,t =
∑

l∈Vk

akl Φl,t.

For the combine-then-adapt strategy, we get the steps

Φk,t =
∑

l∈Vk

akl W l,t−1,

W k,kt = Φk,t + ηk,t

(

yW t−1,k
x⊤
k − LT(yW t−1,k

y⊤
W t−1,k

)Φk,t

)

.

2Several orthogonalization techniques can be investigated within the pro-

posed framework, including the Gram-Schmidt process, the deflation, and

the symmetric orthogonalization. in order to extract multiple principal axes.
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Fig. 2. Convergence analysis in the WSN settings.

5. EXPERIMENTATIONS

In this section, we illustrate the performance of the proposed

approach. In order to provide a fair comparative study, we

use the same initial random estimate for all strategies. The

performance is measured in terms of the angle between the

principal axis w∗, obtained from the centralized strategy with

the eigen-decomposition of the covariance matrix, and the es-

timate w∗,l at node l, namely arccos
w

⊤

∗,lw∗

‖w∗,l‖‖w∗‖
.

5.1. Time series measurements in a WSN

In this section, we consider the problem of tracking a gas

spread using a wireless sensor network (WSN) [20]. Here,

xk,t denotes the gas measurement of the k-th sensor at time

t. The position of a sensor k is denoted by zk ∈ Z. The

region under scrutiny Z = [−0.5, 0.5]× [−0.5, 0.5] is a two-

dimensional unit-area. Our goal is to reduce the order of the

time series of the measurements. The gas diffusion within this

region is governed by the following differential equation:

∂G(z, θ)

∂θ
− c∇2

z
G(z, θ) = Q(z, θ),

where G(z, θ) is the density of gas depending on the position

z and time θ, ∇2
z is the Laplace operator, c the conductivity

of the medium, and Q(z, θ) corresponds to the added quan-

tity of gas. A gas source placed at the origin is activated from

θ = 1 to θ = 15. We use N = 100 sensors deployed uni-

formly in the region Z, each acquiring a time series of 15

measurements, between θ = 1 and θ = 15.

We consider a predetermined range of communication in

the WSN. In this case, two nodes are connected when their

distance is less than 0.38. For the stepsize parameters, we

consider the stepsize η1 = 0.0025 for the first principal axis

and η2 = 0.0005 for the second principal axis. We choose

another stepsize for the second axis for a better convergence.
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Fig. 3. Convergence analysis of the strategies based on infor-

mation theory, in the WSN settings.

As for the information theory, we consider η1 = 0.025 and

η2 = 0.05 for both cooperative and noncooperative strategies.

Figure 2 and Figure 3 show the convergence of each strat-

egy for the general expressions and for the information the-

ory respectively, with the angles Θ1 and Θ2, for the first

and the second axes respectively, averaged over the N nodes.

The confronted strategies are the noncooperative strategy, the

combine-then-adapt (CTA) and adapt-then-combine (ATC)

diffusion strategies, and the consensus implementation. For

the diffusion strategies, we assumed that ckk = 1, and clk = 0
for each k 6= l, with l, k = 1, · · · , 100. Results are shown in

terms of the angle averaged over all the nodes. These learning

curves show that the noncooperative strategy is outperformed

by any diffusion strategy, independently of the combination

rule. The analysis of the diffusion strategies shows that the

adapt-then-combine strategy performs slightly better that the

combine-then-adapt strategy. The overall efficiency of the dif-

fusion strategies is shown in terms of stability.

5.2. Image processing application

We consider an image processing application, with the hand-

written digit “1” given in 90 images of 28-by-28 pixels, each

treated as a 784-dimensional vector. This time, the connec-

tivity between nodes is tested for s = 2240. For the stepsize

parameters, we consider the stepsize η1 = 5.10−8 for the first

principal axis and η2 = 1.10−7 for the second principal axis.

The same stepsize values are taken for the cooperative strate-

gies. As for the information theory, we take η1 = 0.05 and

η2 = 0.05 for both cooperative and noncooperative strate-

gies. Figures 4 and 5 show the convergence of each strategy

for the general form and for the information theory respec-

tively, with the angles averaged over the N nodes. Again,

the noncooperative strategy is outperformed by all diffusion

strategies, independently of the combination rule.



6. CONCLUSION

In this paper, we studied the issue of estimating the principal

axes from PCA in networks. While taking into account the

constraints imposed in WSNs and image processing applica-

tions, we proposed several strategies including noncoopera-

tive and diffusion strategies. Experimental results showed the

relevance of these strategies. As a future work, we will also

include the use of the spatial information within the study.
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