Ridge regression and Kalman filtering for target tracking in wireless sensor networks - Archive ouverte HAL
Communication Dans Un Congrès Année : 2014

Ridge regression and Kalman filtering for target tracking in wireless sensor networks

Résumé

This paper introduces an original method for target tracking in wireless sensor networks that combines machine learning and Kalman filtering. A database of radio-fingerprints is used, along with the ridge regression learning method, to compute a model that takes as input RSSI information, and yields, as output, the positions where the RSSIs are measured. This model leads to a position estimate for each target. The Kalman filter is used afterwards to combine the model's estimates with predictions of the target's positions based on acceleration information, leading to more accurate ones.
Fichier principal
Vignette du fichier
14.sam.kalman.pdf (120.97 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01965991 , version 1 (27-12-2018)

Identifiants

Citer

Sandy Mahfouz, Farah Mourad-Chehade, Paul Honeine, Joumana Farah, Hichem Snoussi. Ridge regression and Kalman filtering for target tracking in wireless sensor networks. Proc. eighth IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), 2014, A Coruna, Spain. pp.237-240, ⟨10.1109/SAM.2014.6882384⟩. ⟨hal-01965991⟩
51 Consultations
285 Téléchargements

Altmetric

Partager

More