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ABSTRACT

This paper introduces an original method for target tracking

in wireless sensor networks that combines machine learning

and Kalman filtering. A database of radio-fingerprints is

used, along with the ridge regression learning method, to

compute a model that takes as input RSSI information,

and yields, as output, the positions where the RSSIs are

measured. This model leads to a position estimate for each

target. The Kalman filter is used afterwards to combine the

model’s estimates with predictions of the target’s positions

based on acceleration information, leading to more accurate

ones.

Index Terms— radio-fingerprinting, Kalman filter, ridge

regression, RSSI, tracking, WSN.

I. INTRODUCTION

Recently, wireless sensor networks (WSNs) have become

a major research field, since they can be used for many

everyday applications [1], [2]. One interesting application

of WSNs is target tracking [3], that consists of estimating

instantly the position of a moving target. Target tracking can

be viewed as a sequential location estimation problem, that

requires a real-time location estimation algorithm. Typically,

sensors broadcast signals in the network, while targets col-

lect these signals for location estimation. Several types of

measurements can be considered, such as received signal

strength indicators (RSSIs) [4], that has proven to achieve

acceptable performance, with no extra hardware.

Many RSSI-based tracking algorithms have been proposed

in the literature. For instance, the authors of [5] provide a

tracking technique using a particle filter with the exact RSSI

channel model. Using also signals powers, the authors of

[6] propose a target tracking method based on the interval

theory and connectivity measurements. These methods are

more robust than the ones using the exact channel model.

However, the number and the positions of the sensors in the

network highly affect the performance of such methods.

In other contexts, RSSI-based methods have been pro-

posed for nodes localization in WSNs. Such methods in-

vestigate observation information, but do not take advantage
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of nodes mobility. Radio-fingerprinting [7] is an interesting

RSSI-based localization approach, since it avoids estimating

the RSSI channel model. We have recently proposed in

[8] and [9] two robust localization methods using radio-

fingerprinting in WSNs, by taking advantage of kernel

methods in machine learning. In [10], the authors perform

tracking by combining estimates obtained using the weighted

K-nearest neighbor (WKNN) algorithm, which is a well-

known RSSI-based fingerprinting algorithm, with accelera-

tion information using the Kalman filter with a second-order

state-space model.

In this paper, we provide a new method for target tracking

in WSNs by combining radio-fingerprinting and accelerom-

eter information. Our method consists of constructing a

database of radio-fingerprints used with the ridge regression

learning method [11] to define a kernel-based model, whose

input is the RSSI vector and whose output is the correspond-

ing position. Then, RSSI measures collected by a moving

target are used with the computed kernel-based model to

get a position estimate. This estimate is combined with the

acceleration information, by means of a Kalman filter [12],

to achieve better accuracy. The rest of the paper is organized

as follows. The proposed tracking method is described in

Section II. Section III describes the kernel-based model’s

definition, while Section IV shows how the Kalman filter

is applied to make use of the accelerometer information.

In Section V, we examine the performance of the proposed

method. Finally, Section VI concludes the paper.

II. DESCRIPTION OF THE TRACKING METHOD

Consider an environment of D dimensions, with D = 2
or 3, and Ns stationary sensors having known locations,

denoted by si, i ∈ {1, . . . , Ns}. In the following, all

coordinates are 1-by-D vectors. For the sake of clarity, only

one target with the unknown position x(k) is considered in

this paper, k being the current time step.

The first step in the proposed method consists of setting

reference positions along the network where RSSI mea-

surements are collected, to construct a database of radio-

fingerprints. To this end, Np reference positions, denoted by

pℓ, ℓ ∈ {1, . . . , Np}, are generated uniformly or randomly in

the studied region. The stationary sensors broadcast signals



with the same initial power, and signals are assumed to be

received at all reference positions. A sensor is temporarily

placed at each reference position pℓ to measure the RSSI of

the broadcasted signals. Let ρℓ = (ρs1,pℓ
. . . ρsNs ,pℓ

)⊤ be

the vector of RSSIs sent by all Ns sensors and received at

the position pℓ. This way, a database of Np pairs (ρℓ,pℓ)
is obtained, where ℓ ∈ {1, . . . , Np}. The objective now is

to define a function ψ : IRNs 7→ IRD, that associates to

each RSSI vector ρℓ the corresponding position pℓ. Kernel

methods [13] provide an elegant framework to find ψ (·), as

it will be shown in the following section.

Note that the database construction and the computation

of ψ(·) are performed only once, before the tracking phase.

Once ψ(·) is defined, the target is able to perform all track-

ing computations and determine its own position. Indeed,

consider a target in the network. This target collects, while

moving, the RSSIs of the signals received from the Ns
sensors, at each time step k, and stores them into a vector

ρ(k). An estimate of the target’s position is obtained using

the defined model ψ (·), and the estimated coordinates are

then given by:

z(k) = ψ(ρ(k)). (1)

Each target is assumed to be equipped with an accelerom-

eter that yields its instantaneous accelerations over the D
coordinates. The estimated position z(k) is then combined

with the accelerometer information to obtain a more accurate

estimate using the Kalman filter [12], as will be explained

in Section IV.

III. COMPUTATION OF ψ (·)

Based on the information gathered by the target from the

stationary sensors (i.e., the constructed database), the objec-

tive is to define the model ψ (·), that associates to each RSSI

vector ρℓ the corresponding position pℓ, ℓ ∈ {1, . . . , Np}.

Determining ψ (·) requires solving a nonlinear regression

problem, as we show in the following.

Let ψ(·) = (ψ1(·) . . . ψD(·)), where each ψd(·),
d ∈ {1, . . . , D}, estimates the d-th coordinate in pℓ =
(pℓ,1 . . . pℓ,D), for an input ρℓ. Let P = (p⊤1 . . .p

⊤
Np

)⊤;

the matrix P is then of size Np-by-D, having pℓ,d for

the (ℓ, d)-th entry. In the following, we denote pℓ by Pℓ,∗,

and the d-th column of P by P∗,d. The vector P∗,d holds

now all Np points for a fixed coordinate d. The classic

ridge regression is considered in this section, where D
optimization problems are set separately to estimate the

D models ψd(·) [11]. Indeed, each function ψd (·) must

minimize the mean quadratic error between the model’s

outputs ψd(ρℓ) and the desired outputs pℓ,d:

min
ψd∈H

1

Np

Np
∑

ℓ=1

(pℓ,d − ψd(ρℓ))
2 + η‖ψd‖

2
H, (2)

where η is a regularization parameter that controls the

tradeoff between the training error and the complexity of

the solution. According to the representer theorem [13], the

optimal function can be written as follows:

ψd(·) =

Np
∑

ℓ=1

αℓ,d κ(ρℓ, ·), (3)

where κ : IRNs × IRNs 7→ IR is a reproducing kernel, and

αℓ,d, ℓ ∈ {1, . . . , Np}, are parameters to be determined. Let

us denote by α the Np-by-D matrix whose (ℓ, d)-th entry

is αℓ,d. Let then α∗,d denote its d-th column, and αℓ,∗ its

ℓ-th row. By injecting (3) in (2), we get a dual optimization

problem in terms of α∗,d, whose solution is given by taking

its derivative with respect to α∗,d and setting it to zero. One

can easily find the following form of the solution:

α∗,d = (K + ηNpINp
)−1P∗,d,

where INp
is the Np-by-Np identity matrix, and K is the

Np-by-Np matrix whose (i, j)-th entry is κ(ρi,ρj), for i, j ∈
{1, ..., Np}. For an appropriate value of the regularization

parameter η, the matrix between parenthesis is always non-

singular.

It is easy to see that the same matrix (K + ηNpINp
)

needs to be inverted in order to estimate each coordinate.

Therefore, to reduce the computational complexity, all D
estimations are collected into a single matrix inversion

problem, as follows:

α = (K + ηNpINp
)−1P . (4)

We then define a model that allows us to estimate all D
coordinates at once, using equation (3) and the definition of

the vector of functions ψ(·), as follows:

ψ(·) =

Np
∑

ℓ=1

αℓ,∗ κ(ρℓ, ·). (5)

IV. TRACKING ENHANCEMENT USING THE

KALMAN FILTER

In this section, we propose to combine the position

estimates obtained using the already-defined kernel-based

model with accelerometer information by means of a Kalman

filter [12]. Challenges arise when the target does not follow

a predictable path, making it difficult to find a model to

describe its motion. We propose here to use a third-order

state-space model to describe the target’s motion. Such

model considers that the target’s accelerations vary linearly

between any two consecutive time steps k− 1 and k with a

slope equal to
γ(k)−γ(k−1)

∆t , where γ(k) = (γ1(k) . . . γD(k))
is the acceleration vector at time step k, and ∆t the time

period separating two consecutive time steps. According to

this assumption, the velocity vector ν(k) of the target at time

step k is estimated recursively by:

ν(k) = ν(k−1)+γ(k−1)∆t+
γ(k)− γ(k − 1)

∆t

∆t2

2
. (6)



Then, by taking the primitive integral of (6), the position of

the target can be written as follows:

x(k) = x(k − 1) + ν(k − 1)∆t + γ(k − 1)
∆t2

2

+
γ(k)− γ(k − 1)

∆t

∆t3

6
. (7)

For small values of ∆t, one can find an accurate approxima-

tion of x(k) using this model. The target is assumed to be at

a fixed known position x(0) at the beginning of the tracking,

having ν(0) and γ(0) null. We add a random D-vector noise

θ(k) to the model of (7), to take into account the inaccuracies

in the measured accelerations. Let the acceleration noises

be independent with zero-mean normal distributions, having

known variances σ2
γd

, d = 1, ..., D. Then, θ(k) would have a

normal probability distribution, with zero mean and diagonal

covariance matrix Q(k), given by the following:

Q(k) = Q(k − 1) +Q
ν
(k − 1)∆t2 +

11

36
∆t4 Diag

(

σ2
γ

)

,

where Q(0) is null, since there is no uncertainty at time step

k = 0, and Q
ν
(k) is given by:

Q
ν
(k) = Q

ν
(k − 1) +

3

2
∆t2 Diag

(

σ2
γ

)

,

where Q
ν
(0) is also null, and Diag

(

σ2
γ

)

is the D-by-D
diagonal matrix with entries σ2

γd
, d = 1, ..., D.

From (7), one can see that the relation between x(k) and

x(k − 1) is linear, and can be written as follows:

x(k) = x(k − 1) +B(k) + θ(k), (8)

where B(k) is a control-input vector depending on the

accelerations given by ν(k − 1)∆t + γ(k − 1) ∆t2

2 +
γ(k)−γ(k−1)

∆t
∆t3

6 . Now, to consider the observations, instead

of taking the RSSI values, we take the position estimate

z(k) given by the kernel-based model, to which we add an

additive noise n(k) due to measurements, as follows:

z(k) = x(k) + n(k). (9)

The noise n(k) ∼ N (0,R) is assumed to have a normal

distribution, with zero mean and covariance matrix R. To

approximate R, a new set of reference pairs is generated,

and the positions are estimated using ψ(·). The error on

this set is computed and stored into a vector. The matrix R,

assumed to be constant over time and for all targets, is then

determined by computing the covariance of the error vector.

Finally, having the two linear equations (8) and (9), the

Kalman filter can be applied to enhance the solution provided

by the technique of Section III. Indeed, the Kalman filter first

predicts the unknown position using the previous estimated

position and the state-space equation (8), as follows:

x̂
−(k) = x̂(k − 1) +B(k),

where x̂(k−1) denotes the target’s position estimated by the

Kalman filter at time step k − 1, with x̂(0) assumed to be

known. The D-by-D predicted estimation covariance is also

updated by T−(k) = T (k − 1) + Q(k), where T (k − 1)
is the final covariance estimation at time step k − 1, and

T (0) is null since the initial state is known. Finally, the

predicted quantities x̂
−(k) and T−(k) are corrected using

the observation equation (9) as follows:

x̂(k) = x̂−(k) + (z(k)− x̂−(k))GK(k)

T (k) = (ID −GK(k))T−(k),

where ID is the D-by-D identity matrix, and GK(k) is the

optimal Kalman gain given by:

GK(k) = T−(k) (T−(k) +R)−1.

In summary, a target’s position is obtained by combining

the position estimated using the model ψ(·) with the one

predicted by the accelerometer information.

V. PRACTICAL SIMULATIONS AND RESULTS

In this section, we evaluate the performance of our method

on simulated data. We consider a 100m × 100m area, and

generate 16 stationary sensors and 100 reference positions

uniformly distributed over the area. RSSI values are com-

puted using the known Okumura-Hata model [14] given by:

ρsi,pℓ
= ρ0 − 10nP log10 ‖si − pℓ‖+ εi,ℓ, (10)

where ρsi,pℓ
(in dBm) is the power received from the

sensor at position si by the node at position pℓ, that is

the i-th entry of the vector ρℓ, ρ0 is the initial power (in

dBm) set to 100, nP is the path-loss exponent set to 4,

‖si − pℓ‖ is the Euclidian distance between the position pℓ
of the considered node and the sensor position si, and εi,ℓ
is the noise affecting the RSSI measures with σρ its stan-

dard deviation. For the definition of ψ(·), we consider the

Gaussian kernel given by κ(ρu,ρu′) = exp
(

−‖ρu−ρu′‖2

2σ2

)

,

where σ is its bandwidth. The choice of the parameters η
and σ is done using the 10-fold cross-validation technique

[15], considering ηNp = 2v with v ∈ {−20,−19, · · · ,−1}
and σ = 2v

′

with v′ ∈ {1, 2, · · · , 10}. We consider cosine

functions for the accelerations. Then, the trajectory shown

on the left plot of Fig. 1 is generated by taking twice

the primitive integral of the accelerations. The RSSI values

collected by the moving target are calculated using (10). In

order to simulate a noisy environment, both components of

σγ are taken equal to 0.01m/s2, and σρ is taken equal to

1dB. The left plot of Fig. 1 shows the environment setup,

the real trajectory, and the estimated trajectory using the

proposed method. Let the estimation error be evaluated by

the root mean squared distance between the exact positions

and the estimated ones, then the error is equal to 1.07m.

We now compare our method to the one proposed in

[10], where the authors perform tracking by combining the

fingerprinting-based WKNN algorithm with a Kalman filter.

This method consists of finding a position estimate using
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Fig. 1: Estimation of the trajectory using the proposed method on the left plot, estimation error as a function of the noise

on the accelerations on the middle plot and as a function of the noise on the RSSI on the right plot.

WKNN, then enhances it by applying the Kalman filter. The

number of neighbors K is taken equal to 8, and a second-

order state-space model is used as in [10]. The algorithm is

tested for the same setup as in the left plot of Fig. 1, and

using the same values for σγ and σρ. The estimation error

obtained is equal to 2.88m. One can see that this error is

significantly higher than the one obtained with our method.

We now propose to study the impact of the noises standard

deviations σγ and σρ on the estimation error. All results are

averaged over 50 Monte-Carlo simulations. First, different

percentages of the standard deviation of the acceleration are

taken, going from 1% to 10%, along with a fixed σρ equal to

5% of standard deviation of the RSSI measures. The standard

deviation of the RSSI measured at the reference positions is

equal to 10.79dBm, leading to σρ = 0.54dBm. The results

in the middle plot of Fig. 1 show that the ridge regression

combined with the Kalman filter yields the best results, even

when the noise on the accelerations is high. We then fix

the value of σγ to 1% of the standard deviation of the ac-

celeration, and consider several percentages of the standard

deviation of the RSSI measures, going from 0% to 50%; in

other words, σρ varies from 0 to 5.40dBm. The right plot

of Fig. 1 shows that the ridge regression is highly affected

by the noise variations, since RSSI measurements are used

for the estimation, while tracking using only accelerometer

information is not. However, the ridge regression combined

with the Kalman filter yields the best results here as well,

proving the effectiveness of using the Kalman filter.

VI. CONCLUSION

In this paper, we proposed a new method for target track-

ing in WSNs that combines ridge regression and Kalman

filtering. Simulation results showed that our method allows

accurate tracking, and is proved to be robust in the case

of noisy data. It also outperforms tracking using a recently

developed method based on the WKNN method and a

Kalman filter. Future work will handle further improvements

of our method, such as introducing a decentralized version.
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