Nonlinear hyperspectral unmixing accounting for spatial illumination variability - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Nonlinear hyperspectral unmixing accounting for spatial illumination variability

Résumé

This paper presents a new supervised algorithm for nonlinear hyperspectral unmixing. Based on the residual component analysis model, the proposed model assumes the linear model to be corrupted by an additive term that accounts for bilinear interactions between the endmembers. The proposed formulation considers also the effect of the spatial illumination variability. The parameters of the proposed model are estimated using a Bayesian strategy. This approach introduces prior distributions on the parameters of interest to take into account their known constraints. The resulting posterior distribution is optimized using a coordinate descent algorithm which allows us to approximate the maximum a posteriori estimator of the unknown model parameters. The proposed model and estimation algorithm are validated on both synthetic and real images showing competitive results regarding the quality of the inferences and the computational complexity when compared to the state-of-the-art algorithms.
Fichier principal
Vignette du fichier
16.whispers.variability_draft.pdf (408.83 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01965918 , version 1 (27-12-2018)

Identifiants

Citer

Abderrahim Halimi, Paul Honeine, José Bioucas-Dias, Gerald S. Buller, Steve Mclaughlin. Nonlinear hyperspectral unmixing accounting for spatial illumination variability. Proc. IEEE Workshop on Hyperspectral Image and Signal Processing : Evolution in Remote Sensing (WHISPERS), 2016, Los Angeles, CA, United States. ⟨10.1109/WHISPERS.2016.8071750⟩. ⟨hal-01965918⟩
21 Consultations
80 Téléchargements

Altmetric

Partager

More